Behavioral ecology of African wolf (*Canis lupaster*) and its implication for Ethiopian wolf (*Canis simensis*) conservation in the Ethiopian Highlands

PhD dissertation defense

Tariku Mekonnen Gutema

October 1, 2020

Centre for Ecological and Evolutionary Synthesis (CEES) Department of Biosciences, University of Oslo, Norway

OUTLINE OF THE PRESENTATION

- 1. Introduction
- 2. Aim of the Study
- 3. General Methodologies
- 4. Papers I-IV
- 5. Conclusions and Recommendations

1. INTRODUCTION

The family Canidae composed of 34-36 living species (domestic dogs, wolves, foxes, jackals and dingos)

Some of the African Canids includes:

African wild dog (Lycaon pictus)

Ethiopian wolf (Canis simensis)

ENDANGERED

Fig. Distribution of Ethiopian wolves (Marino and Sillero-Zubiri 2011)

Distribution in Africa

Intro...

- African wolf (AW) is the most recently discovered mammal species in Africa (Rueness et al. 2011)
 - It was confused with Eurasians golden jackals (Canis aureus;)

African wolf (*C.lupaster*)

Golden jackals (Canis aureus)

Fig. Cryptic species (African and Eurasians golden jackals; Kopple et al. 2015)

Intro...

Recent studies confirmed that the African golden jackals are wolves

Rueness *et al*. 2011 Gaubert*et al*. 2012 Kopple *et al*. 2015 Viranta *et al*. 2017

Intro...

- In lowlands of East Africa, AWs coexist with Sidestriped and Black-backed jackals through resource partitioning.
- When coexist:
 - Side- striped jakals use open woodland and nocturnal
 - Black-backed jackals use closed woodland / active at dawn
 - AWs uses grassland and diurnal

Intro....

In the Ethiopian highlands AWs coexist with the endangered Ethiopian wolves

- Habitat specialist
- Rodent specialist
- < 500 individuals

Fig. Distribution of Ethiopian wolves (Marino and Sillero-Zubiri 2011)

- Anthropogenic impacts disrupting the coexistence of carnivore species (Sinclair and Dobson 2015).
- Habitat fragmentation and overgrazing increases interspecific competition
- Interference competition
 - Direct, antagonistic
- Exploitative competition
 - Indirect, limited resources

Fig. Livestock in buffer habitat at Guassa Community Conservation Area.

2. AIM OF THE STUDY

• To document the behavioral ecology of AWs and to investigate the extent of competition among AWs and EWs

Specifically to:

- evaluate the extent of competition between AWs and EWs,
- investigate the foraging behavior of AWs
- determine the home range, activity, and habitat use of AWs
- investigate the status of human-carnivore conflict

3.GENERAL METHODOLOGY

Study area

Fig. The study area

Study area....

- We divided the study area into core, buffer & matrix
 - *Core* (all human and livestock activities are prohibited).
 - *Buffer* (controlled livestock grazing is permitted).
 - Matrix (humandominated areas adjacent to the protected area).

Fig. Three division of Study areas

Methods

• We collared 14 AWs using rubber-lined foothold traps and tracked for 16 months

Fig 8. Immobilizing collaring and tracking of African wolves

- GPS locations to analyze home range and distribution
- Scat analyses to evaluate diet overlap (Paper I, IV)
- Small mammals trapping (Paper I and II)
- Direct observation (paper II)

4. PAPERS

Paper I

ROYAL SOCIETY OPEN SCIENCE

rsos.royalsocietypublishing.org

Research

Cite this article: Gutema TM *et al.* 2018 Competition between sympatric wolf taxa: an example involving African and Ethiopian wolves. *R. Soc. open sci.* **5**: 172207. http://dx.doi.org/10.1098/rsos.172207

Received: 17 January 2018 Accepted: 22 March 2018 Competition between sympatric wolf taxa: an example involving African and Ethiopian wolves

Tariku Mekonnen Gutema^{1,2}, Anagaw Atickem³, Afework Bekele⁴, Claudio Sillero-Zubiri^{5,6}, Mohammed Kasso⁴, Diress Tsegaye⁷, Vivek V. Venkataraman⁸, Peter J. Fashing⁹, Dietmar Zinner³ and Nils C. Stenseth^{1,4}

¹Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences,

Paper I

Objectives

- To assess the extent of competition between AWs and EWs
- To evaluate habitat quality in the buffer and core zone.

Methods

- Distribution: GPS recorded
- Competition: recording nature of the interaction (neutral, aggression and bite)
- Diet overlap: Scat analyses

Results and Discussion

• AWs inhabit the buffer and while EWs the core.

Fig. 2. Southern section of the GCCA, including transects (vertical lines) and sighting locations of Aws and EWs.

• The species winning the interaction depended on the site and group size of AWs.

Fig 3. Fraction of agonistic encounters won by Aws and Ews in relation to encounter locations (buffer zone versus core area).

Group size helped AWs to win some contests

Table 1. Estimates of probability of the AW versus EW winning encounters in core area versus buffer zone. 'Buffer zone' was used as a reference level in the analysis.

effects	estimate	s.e.	Z	р
intercept	1.150	1.808	0.636	0.250
site (core versus buffer)	—8.971	3.043	—2.948	0.003
AW group size	3.171	1.295	2.449	0.014
EW group size	2.001	1.300	—1.590	0.124

Norwegian Centre of

Summary paper 1

- AWs inhabit in the buffer while EWs in the core zone
- There is interference competition between AWs and EWs
- Territory and group size are important for dominancy

PAPER II

ROYAL SOCIETY OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Research

Cite this article: Gutema TM *et al.* 2019 Foraging ecology of African wolves (*Canis lupaster*) and its implications for the conservation of Ethiopian wolves (*Canis simensis*). *R. Soc. open sci.* 6: 190772. http://dx.doi.org/10.1098/rsos.190772

Received: 15 May 2019 Accepted: 9 August 2019

Subject Category: Biology (whole organism)

Subject Areas: ecology/behaviour

Keywords:

African wolf, ecosystem services, Ethiopian highlands, Ethiopian wolf, feeding ecology, pest rodents Foraging ecology of African wolves (*Canis lupaster*) and its implications for the conservation of Ethiopian wolves (*Canis simensis*)

Tariku Mekonnen Gutema^{1,3}, Anagaw Atickem^{4,5}, Diress Tsegaye², Afework Bekele⁵, Claudio Sillero-Zubiri^{6,7}, Jorgelina Marino^{6,7}, Mohammed Kasso⁵, Vivek V. Venkataraman⁸, Peter J. Fashing^{1,9} and Nils C. Stenseth^{1,5}

¹Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, and ²Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway ³Department of Natural Resources Management, Jimma University, PO Box 307, Ethiopia ⁴Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany ⁵Department of Zoological Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia ⁶Wildlife Conservation Research Unit, Zoology Department, University of Oxford, Tubney House, Tubney 0X13 SQL, UK ⁷IUCN SSC Canid Specialist Group, Oxford, UK ⁸Institute for Advanced Study in Toulouse, Toulouse 31000, France ⁹Department of Anthropology and Environmental Studies Program, California State University Fullerton, 800 North State College Boulevard, Fullerton, CA 92834, USA

WV, 0000-0001-5016-4423; NCS, 0000-0002-1591-5399

Paper II

Objectives

- AWs diet that derived from scavenging versus active hunting
- AWs foraging in farmland versus natural habitat rodent trapping activity by local farmers

Methods

- Feeding activities (scavenging vs active hunting)
- Successful and unsuccessful feeding attempts
- The number and species of rodents trapped by 'difit'

Results and Discussion

• AW is an opportunistic forager and regularly scavenging

Fig. Probability of African wolves feeding on d/t diets in the dry & wet seasons.

 Aws success rates of capturing rodents increases in the Farmland (36%) Others (<17%)

Fig. 4. Probability of African wolves successfully capturing rodents.

Summary paper II

The study showed that

- A large proportion of the rodents in AWs were from dead animals,
- Exploitative food competition between the AW and EW would be limited.
- The importance of AWs in rodent pest control and waste management

PAPER III

Ranging, habitat, and activity patterns of African wolves (*Canis lupaster*) in two landscapes of the Ethiopian Highlands.

(Manuscript)

Gutema, T. M., Atickem, A., Tsegaye, D., Chala, D., Bekele, A., Sillero-Zubiri, C., Marino, J., & Stenseth, N. C. (?).

Objectives

 To determine the home range size, habitat use and activity patterns in two study sites

Methods

- Home range size was estimated using MCP and KDE
- We recorded activities as travelling, resting, hunting and feeding

Results and Discussion

Significant variation in AW home range sizes in different landscapes

Fig 3. Comparison of mean \pm SD 95% and 50% KDE home range sizes (km²) of AWs

AWs habitat Use,

- Mostly bushland... during the day,
- farmland and open grassland during the night

Fig: Mean percentage time spent by AWs in different habitat types

Results....

AWs activity peaks was at dawn and dusk

- 04:00 --10:00 (dawn)
- 16:00-20:00 (dusk)
- EWs were active during a day (Ashenafi et al., 2005)

Percentage of active time of AWs in BSNP and GCCA

Summary Paper III.

- The extent of AWs and EWs niche partitioning that allow them for coexistence.
- The plasticity of AWs and their ability to respond to human-induced landscape changes.

PAPER IV

Paper IV

Objective

• To asses the level of human -African wolf conflict

Method

- A questionnaire survey of 250 local communities in 3 years
- Scat analyses (n = 101)

Results

- AWs were the most livestock predator in the GCCA (74.6%, n = 492)
- Highest economic losses by AWs (78.9%, of the total)
- The community had negative attitudes toward the AWs (80%)
- Only 14 % negative attitude toward Ews.

February to April were the highest predation season

Fig 2 Livestock depredation rate across different months of the year

5. CONCLUSIONS AND RECOMMENDATIONS

Conclusion

African wolves

- Can be a threat to the EWs through interference competition,
- Omnivorous diet with a prominent scavenging ,
- Home range sizes are flexible based on landscape;
- involved on serious human-predator conflict,
- important in ecosystem service role

Recommendations

- Reducing human encroachment and habitat loss
- Protection of intact habitats to preserve habitat preferred by EWs
- Increasing local community awareness about the value of AWs in rodent pest controll
- Focusing on mitigation measures to reduce carnivorehuman conflict

6.Project in Progress

6.1 Population status and reproduction ecology of African wolves

- Estimating the population of AWs using call-up methods in four Ethiopian Highlands
- Reproduction ecology: study of den sites, pups number and activities,

Acknowledgements

Financials support

- The Rufford Foundation
- The Norwegian Quota Scheme
- University of Oslo, CEES
- Mohamed Bin Zayed Species Conservation Fund
- Jimma University

Supervisors

- Prof. Nils Chr. Stenseth
- Prof Afework Bekele
- Prof Claudio Sillero-Zubiri
- Dr. Anagaw Atikem,

Others:

- Ethiopian Wolf Conservation Programme
- Ethiopian Wildlife Conservation Authority
- All my field assistants
- Colleagues
- Families

