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Abstract

Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of
resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and
combined effects of different threats on population persistence in a natural setting, since not all organisms can be
associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that
examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked
roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of
resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a
species highly morphologically specialized for roosting in the developing furled leaves of members of the order
Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before:
mean 0.146SD 0.08 ha; after: 0.7360.68 ha), and that mean association indices decreased (before: 0.9560.10; after:
0.7760.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is
associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in
social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure,
and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than
developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of
this species’ local populations.
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Introduction

Current rates of habitat loss and climate change caused by

human activities have negatively impacted a large number of species

across all major biomes [1]. Specialist species appear more

vulnerable to these activities as they typically exhibit higher

extinction rates relative to generalists [2]. The use of a restricted

range of resources or habitats puts specialists at greater risk under

environmental disturbance because of an increase in competition

with generalists, failure to adapt to changing conditions, and an

inability or unwillingness to cross gaps of unsuitable habitats to

colonize isolated patches [2,3]. Moreover, compared to behavioral

specialists, or those that select specific items among a pool of

available resources, species that exhibit functional specialization are

more vulnerable to environmental changes because unique

physiological or morphological traits restrict them to only a narrow

set of resources and conditions [4,5]. If these critical resources are

depleted or lost, populations will decline because individuals are

unable to exploit alternative food items or habitats [6,7].

Mammals have been severely affected by human activities,

particularly those responsible for habitat loss and degradation,

with 25% of species for which adequate data are available

considered threatened with extinction, and accelerated rates of

population decline for at least 50% of mammal species [8].

Unfortunately, a substantial reduction in the geographic range of

species not only places these species at greater risk of extinction,

but also implies a serious loss of ecosystem services and goods [9].

Of particular concern is the loss of services provided by many

species of bats, as they are efficient foragers that consume a large

number of potentially destructive insect pests, are effective long-

distance seed dispersers and pollinators, and provide a number of

valued products such as fertilizers [10]. At least 24% of all known

species of bats are under threat from human activities such as the

introduction of alien species, hunting, loss of foraging habitat, and

loss of roosts [11]. Bats that have specialized on specific food items,

habitats, or roosts appear to be at greatest risk [7,11,12].

Even though habitat loss and fragmentation, overexploitation,

and climate change are known to affect long-term population

persistence in bats and other organisms, the effects of these threats

on populations remain largely unknown, mostly because of the

difficulties involved in isolating their individual and combined

effects [13]. This uncertainty is considered as a major drawback in

projecting changes in biodiversity and extinction risk, and in the

design of effective conservation strategies [14–16]. Thus, to isolate

the response of organisms to specific changes in their environment,

it is often necessary to sample populations before and after an

experimental or natural perturbation occurs, and to test for

changes in biologically significant parameters [17,18]. In most

experimentally or naturally occurring perturbations, the environ-

ment is not completely destroyed but rather modified in such a
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way that only a subset of resources is removed, depleted, or altered

(e.g., [19,20]). The results of such studies are not only useful in

isolating the effect of particular threats, but also because they

provide clues toward understanding how the performance of

individuals (i.e., growth, survival, reproduction) is affected by

specific resources [5], and whether these resources can be

considered critical [21]. Notwithstanding, conducting such

experiments in a natural setting is often difficult because not all

organisms can be associated with discrete, easily identifiable

landscape features occurring over limited spatial scales that would

be amenable to removal experiments. In fact, resource removal

experiments are often at odds with conservation priorities, and

tend to be very costly.

Here we present the results of a field study that examines the

short-term effects of resource loss in a specialist bat species that

uses a discrete, easily identifiable habitat feature that occurs over

limited spatial scales and is amenable to experimentation, mainly

due to the ease with which it can be temporarily removed.

Specifically, we experimentally mimicked the loss of roosting

habitat in a natural setting and monitored individuals before and

after the perturbation to determine patterns of resource use, spatial

behavior, and group stability. We investigated changes in these

parameters as they can all be used to assess mortality risks, energy

expenditure, and cooperation [22–26], and ultimately predict

resilience to habitat perturbations. Because the study species is

highly specialized for exploiting one type of roost [27], and based

on results of previous studies addressing the response of populations

to habitat loss or resource depletion (e.g., [20,28,29]) and on models

of resource selection, such as the optimal foraging theory or optimal

diet models [30–33], we hypothesize that removing roosting habitat

will decrease roost selectivity, increase mobility of individuals while

attempting to locate suitable habitat, and increase mortality. To our

knowledge, this is the first study to closely monitor the behavior of

single individuals after experimentally removing a critical resource

in a natural setting.

Methods

Study species
Our study focused on Spix’s disk-winged bat (Thyroptera tricolor),

a small (3–4 g), insectivorous species found in lowland Neotropical

forests from southern Mexico to southeastern Brazil [34]. T. tricolor

is morphologically highly specialized for roosting in the developing

furled leaves of members of the order Zingiberales (primarily in

the genera Heliconia and Calathea), and may be incapable of using

other types of roosts that require gripping with the claws [27]. To

attach themselves to the inner sides of the leaves while roosting,

individuals use suction disks located on their thumbs and feet [35].

The plants used by this bat species for roosting are typically found

in secondary forests and clearings, and there is extensive spatial

variation in their density [36]. The furled stage of these leaves is

suitable for use by T. tricolor for very short periods, ranging from 5

to 31 hours [37,38]. Because T. tricolor is highly habitat specific

and incapable of using other types of roosts, its distribution is

strongly correlated with the density and distribution of furled

leaves.

While there are no published studies specifically addressing

roost-site preferences in T. tricolor, research suggests that this bat

uses some plant species more often than others, and that this

species may also prefer to use tubular leaves that meet specific

requirements. In south-western Costa Rica, T. tricolor has

predominantly been found in the rolled leaves of Heliconia imbricata,

and more rarely in H. rostrata, H. latispatha, and Calathea spp.

Despite the large abundance of H. latispatha in the region, bats are

seldom captured in this plant [37]. In north-eastern Costa Rica, T.

tricolor is known to use 7 species of plants, including several species

of Heliconia, Calathea inocephala, and Musa species. The most

commonly used plant species in this region is H. pogonantha [38].

In addition to these studies that addressed use of specific plants,

field observations of occupied and unoccupied tubular leaves have

demonstrated that T. tricolor prefers more closed and longer leaves

for roosting [37,38], probably because these leaves may provide

enhanced protection from weather or predators compared to more

opened tubular leaves.

Although there is little available data on the feeding ecology of

T. tricolor, studies on their diet [39], echolocation [40], and

morphology [41] suggest that this species is primarily a gleaner,

feeding mostly on jumping spiders and leafhoppers. Their short,

broad wings are well suited for the slow, maneuverable flight

necessary for gleaning, but may also set an upper limit as to how

far they can fly during nighttime foraging bouts, potentially

making them poor dispersers [42]. In fact, our recent findings

show that T. tricolor exhibits low emigration rates from, and long

residence times within, natal territories, coupled with high levels of

offspring retention from both sexes within natal groups [43].

Offspring natal philopatry results in the formation of mixed-sex

groups composed of up to 14 individuals, which maintain a local

distribution and small, overlapping, home ranges [44]. Despite

their spatial overlap, groups are highly cohesive for up to 22

months, without immigration of individuals from other groups or

emigration of group members [45]. Recent findings show that T.

tricolor uses social calls to actively recruit group members to roosts

[46], suggesting that acoustic communication may play an

important role in group cohesion and in the location of roost sites.

Study sites and sampling of populations
This study was conducted at six sites, Bolivar (8u389N,

83u049W), Eduardo (8u419N, 83u089W), Desanti (8u369N,

83u039W), Suita, Catarata, and Rio (8u419N, 83u079W), located

in the lowlands of private properties located in southwestern Costa

Rica. These research areas consist mainly of dense tropical broad-

leaved evergreen lowland forests, with surrounding habitats that

include pasturelands, hardwood plantations, agricultural crops,

and human settlements. Sites were located near river beds in valley

floors, mostly within or immediately adjacent to late-secondary or

primary forests. Only one site (Bolivar) was located within a

Gmelina arborea hardwood plantation. The size and shape of

experimental plots within sites were selected based on 1. naturally-

occurring dense patches of Heliconia imbricata plants surrounded by

relatively unsuitable roosting habitats, 2. the presence of a T.

tricolor group, and 3. the size and shape of the group’s home range

before the habitat loss experiment. Patches of H. imbricata were

preferred over those of other plant species because this is the

preferred roosting resource of T. tricolor in southwestern Costa

Rica (G. Chaverri, unpublished data; [37]).

Study plots were sampled for bats before the start of habitat

removal experiments to gather baseline data of roost species

preferences, patch use, group home range size, and group

cohesion. All tubular leaves within the plot were searched, and

bats were captured in all identified roosts by pinching the top of

the leaf and directing individuals into a cloth-holding bag. All bats

were fitted with individually numbered metal wing bands, sexed,

aged based on the degree of ossification of the metacarpal-

phalange joint [47] and their reproductive condition assessed [48].

All protocols for capturing and handling bats were approved by

the Costa Rican government (permit number R-008-2009-OT-

CONAGEBIO) and by Boston University’s Institutional Animal

Care and Use Committee (approval number 02-005).
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All sites had one social group that had been captured and/or

radiotracked several times before the habitat removal experiment.

The size of these groups ranged from 6 to 9 individuals (Table 1).

At sites B (Bolivar), S (Suita), and E (Eduardo), we sampled the

focal group 6 to 8 times during a period of 4–5 months before

experimentally removing the habitat (Table 1). Thus, data

collected from this period were treated as the ‘‘before’’ data. At

the other three sites, D (Desanti), C (Catarata), and R (Rio),

we captured the focal group 0 to 4 times during a period of

2 to 4 months before fitting them with transmitters. These

transmitters were attached for 5 to 7 days before removing the

habitat (Table 1). Thus, at D, C, and R, the ‘‘before’’ data

consisted of observations collected over a few months together

with daily data collected after attaching radiotransmitters and

before removing roosting resources.

Habitat loss experiment
To mimic habitat loss, we cut all plants that could potentially

be used as roosts in the experimental plots. This includes all species

of Heliconia, such as H. imbricata, H. latispatha, H. irrasa, and H.

stilesii; all Calathea, including C. lutea, and C. inocephala; and all Musa.

Plants were identified based on floral characteristics using field

guides [49,50]. We attempted to remove all plants that were

located not only within the home range of the focal group, as

determined by the location of roosts during the ‘‘before’’

observations, but also some immediately adjacent plants. Plants

were cut at a height of approximately 50 cm; this would guarantee

the removal of all leaves that could potentially be used as roosts

for the following 2–3 weeks, while securing the long-term survival

of plants.

At the time of habitat removal, we first captured the focal group

and fitted several bats at sites B, S, and E, with small

radiotransmitters (0.25 g, Blackburn Electronics, Nacogdoches,

Texas; Table 1). Bats were released at their capture site after

removing habitat, and subsequently located at their roosts for as

long as the radiotransmitter remained active and attached

(Table 1). Bats in sites B, S, and E were located in their roosts

after removing habitat a total of 7 to 8 days. Data collected during

this period were treated as the ‘‘after’’ data. At the remaining sites,

D, C, and R, we fitted 3 to 7 individuals with radiotransmitters

that lasted 16–17 days (0.20 g, model A2412, Advanced

Telemetry Systems, Isanti, Minnesota; Table 1). At these sites,

bats were captured, fitted with transmitters, and then released at

the same location and tracked for a few days before experimentally

removing potential roosts. After habitat removal, bats were located

in their roosts for 9 to 12 days (Table 1). During this period, data

were treated as the ‘‘after’’ removal of roosting habitats.

Data analysis
Before and after habitat removal, we collected data on plant

species used for roosting, location of roosts to estimate home range

size, patch use, and group composition to measure group stability.

To explore differences in the number of species used before and

after habitat removal, we used the rarefaction method. This

method is used for estimating the number of species expected in a

random sample of individuals, thus allowing us to standardize our

results to a common sample size [51]. Thus, in our study,

rarefaction curves allow us to determine the estimated number of

plant species used by the bats if sampling during the ‘‘before’’ and

‘‘after’’ trials would have been the same. Rarefaction curves were

generated separately for both trials using EcoSim 7 [52] and

plotted together for further comparison.

All roosts recorded during the before and after trials were

located using a Global Positioning System (eTrex, Garmin

International Inc., Olathe, Kansas). We then calculated the size

of the roosting home range for each individual before and after

habitat removal by drawing 100 percent Minimum Convex

Polygons. For this purpose we used the Home Range Extension

[53] in ArcGIS 9.2 (Environmental Systems Research Institute,

Redlands, California). We log transformed measures of home

range size to meet assumptions of normality. Data were then

analyzed using a linear mixed-effects model using the restricted

maximum likelihood method in SPSS version 17.0 (SPSS Inc.,

Chicago, Illinois) to determine if there were differences in home

range size among the before and after trials while accounting for

the effect of site and the possibility that home range size may be

correlated among group members. Thus, in the model, trial was

treated as a fixed effect, while site was treated as a random effect.

We also ran a general linear model in SPSS, with trial and site as

fixed factors, to determine if there were significant differences in

home range size between trials within sites, using Bonferroni

correction for multiple pairwise comparisons.

After establishing the location of bats before and after the

removal of all potential roosts, we also mapped the study site using

ArcGIS, noting the specific locations of habitat patches, roosts

used by the focal group during the before and after trials, and

location of other social groups. The size and shape of each site

were selected according to the movement of bats before and after

the removal of roosts, such that our maps and analyses of patch

use encompass all potentially available resources in the area based

on realistic results of animal movements. Based on these maps, we

determined how bats were using roosting resources before and

after habitat removal by comparing the observed data with

five predictive models: 1) patchy resource, 2) preferred species, 3)

largest patch, 4) nearest patch, and 5) unoccupied site. To avoid

problems with pseudoreplication, we tested these models using

data from groups and not individuals. For the patchy resource model,

we predicted that bats would use clumped roosts, defined as

Heliconia spp. or Calathea spp. plants located close to each other

(i.e., 1–3 m) in an area greater than 100 m2. For the preferred species

model, we predicted that bats would use H. imbricata, their

preferred plants species in the study area, as roost sites. We also

predicted that bats would use the largest patch in the area (largest

patch model), and that they would use the patch closest to the

group’s core home range (nearest patch model). Finally, we predicted

that roosts used by the focal group would be located in a patch that

was not occupied by another group. All data were classified as yes

Table 1. Sampling protocol for each one of the six study
sites.

Group size Before After Radiotagged

Site M F RC RT RT M F

B 7 3 6 0 8 3 2

S 5 2 8 0 7 2 2

E 2 4 6 0 7 2 3

D 3 3 4 5 12 1 3

C 4 2 0 7 9 2 1

R 5 4 3 6 10 3 4

Group size refers to the number of males (M) and females (F) present in each
one of the focal groups. Sample size before and after habitat removal refers to
the number of days in which bats were located based on roost captures (RC) or
radiotelemetry (RT), with the number of males and females that were
radiotagged per focal group.
doi:10.1371/journal.pone.0028821.t001
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or no, depending on whether groups were using a roost according

to the proposed models. Observed results of these five models were

tested against the expectation that bats would primarily (i.e., 99%

of the time) use H. imbricata roosts located in the largest and closest

unoccupied patches. Less stringent expectations (e.g., 95% of the

time) resulted in similar trends. We compared our field

observations with these expected values based on chi-squared

goodness of fit tests [54].

To determine if group stability varied as a result of habitat

removal, we first calculated the simple ratio association index

[55,56] for each individual and trial (before and after). This index

estimates the proportion of time that two individuals (or dyad) spent

in association, and ranges from 0 (no association) to one. In this

analysis, a dyad was considered to be associating if individuals were

captured or tracked at the same roost at the same time. The simple

ratio association index was calculated as X/(X+YAB+YA+YB),

where X is the number of observations during which bat A and bat

B were observed together in the same roost, YAB is the number of

observation periods during which A and B were observed in

separate groups, YA is the number of observation periods during

which only A was observed, and YB the number of observations in

which only B was observed. Analyses of associations were performed

in SOCPROG version 2.4 [57]. To test for the effect of habitat

removal on group stability, we used Mantel tests with 10,000

permutations in SOCPROG to compare differences in association

indices before and after removing habitat for the six study sites

independently. In addition, to test the correlation between home

range size and association indices, we ran a linear regression with

standard errors clustered across sites and individuals [58] in Stata/

SE 10.0 (StataCorp, College Station, Texas).

Results

Plants used for roosting
Before their roost habitat was removed, at most sites T. tricolor

primarily used H. imbricata for roosting (Fig. 1). Some groups also

used other species such as C. lutea, H. latispatha, and Musa sp. The

only site in which bats predominantly used a species other than H.

imbricata before removing habitat was C, where the majority of

roosts were recorded in Musa sp. For all sites, individuals

continued to use H. imbricata in the after trial, only not as

frequently as they did during the before trial. There was no

apparent preferred plant species for roosting during the after trial.

Individuals at different sites used a minimum of one and a

maximum of three plant species for roosting during the before trial

(n = 44), while in the after trial individuals used a minimum of two

and a maximum of six species per site (n = 65). Rarefaction curves

for all sites combined show that the richness of plant species used

for roosting increased once the habitat was removed (Fig. 2). With

the exception of site B, individuals at all sites used a greater

diversity of plants for roosting once their habitat had been

removed.

During the before trials, bats typically used furled leaves within

their preferred size range, height, and inclination. In the after trial,

however, we observed bats using leaves that were much wider than

usual. We also recorded individuals in smaller plants (e.g.,

openings of tubular leaves were approximately 1 magl), and we

also found individuals roosting one day in a tubular leaf whose

inclination approached a 45u angle. In our 436 bat-days of

observation, we never recorded individuals roosting in any

structure other than tubular leaves.

Figure 1. Plant species used for roosting before and after removing habitat. Number of observations per site per trial is indicated within
the corresponding bars.
doi:10.1371/journal.pone.0028821.g001

Response of a Specialist to the Loss of Resources

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28821



Home range size and patch use
Overall, T. tricolor showed a significant increase in home range

size after their habitat was removed (before: mean 0.146SD

0.08 ha; after: 0.7360.68 ha; F1,46 = 85.67, P,0.001). Only 5 out

of 27 individuals exhibited a decrease in home range size after

habitat removal. A significant increase in home range size during

the after trial was observed in sites E, C, and R (Fig. 3). In all other

sites, except S, there was also a mean increase in home range size

between the before and after trials. The smallest difference in

home range size between trials was observed in S, where it

decreased by 0.04 ha after removing habitat. The largest

difference in home range size between trials was observed in E,

where average size increased from 0.10 to 1.94 ha (Fig. 3).

Before habitat was removed, all focal groups were consistently

captured in H. imbricata patches that ranged in size from

approximately 100 to 2,500 m2 (Fig. 4). These patches were often

surrounded by a few sparse plants of H. imbricata and by dense

patches of C. lutea and H. latispatha, which were occasionally used

by the focal group as roosts. At all sites, surrounding dense habitat

patches of H. imbricata were typically occupied by other groups,

and were never used either before or after habitat removal by the

focal group. Bats returned to their original habitat patch as soon as

regenerating plants produced suitable furled leaves, approximately

3–4 weeks after plants were cut.

Results of our models of resource use show that observed and

expected values of the unoccupied site model provided the best fit to

the data either before or after habitat removal, as demonstrated by

the low chi-square values (Fig. 5). Models also indicate that before

habitat removal, bats predominantly used patchy roosting

resources of their preferred plant species near their core home

range. This trend changed considerably after the habitat was

removed, as bats predominantly used more scattered and farther

roosting resources of other non-preferred species.

Figure 2. Rarefaction curves for plant species used as roosts before and after habitat removal for all sites combined (upper graph)
and for each one of the six sites (lower graphs).
doi:10.1371/journal.pone.0028821.g002

Figure 3. Mean home range size (in hectares) before (filled
circles) and after (open circles) removing habitat at the six
study sites. Error bars represent mean6SD.
doi:10.1371/journal.pone.0028821.g003
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Group stability and mortality
Group composition was stable both before and after habitat

removal, with dyadic association indices ranging from 0.35 to 1.

The site with the lowest average association index during the

before trial was C (0.7060.12; Fig. 6). In the before trials, groups

sampled at sites B, E, D, and R showed no change in the

composition of groups. Thus, all individuals at these sites were

observed together during the period before removing habitat.

Overall, a significant decrease in mean association was observed

after removing roosting habitat (before: 0.9560.10; after:

0.7760.18). Significant differences in mean association between

trials were observed in B, E, and R (Mantel test with 10,000

permutations: p,0.05). The smallest decrease in mean association

was observed in R, while the largest decrease after removing

roosting habitat was observed in D. Regression analysis shows that

association indices were significantly correlated with home range

size (R2 = 0.13, F1,26 = 15.77, P,0.001).

While changes in group composition were mostly attributed to

individuals from the same group roosting in separate leaves at the

same time, mortality also had an important effect on measures of

group stability. In site B, a radiotagged male was found dead on

top of a leaf one day after attaching the radiotransmitter, which

suggests that this individual was unable to tolerate the additional

mass. In fact, radiotags often exceeded by 1 or 2% the

recommended 5% relationship between the mass of radiotags

and the mass of bats [59]. Another male died in site E 6 days after

the transmitter had been attached and the habitat was removed,

and a female in D died 7 days after removing the habitat and 11

after attaching the radiotransmitter. These latter individuals were

found dead inside furled leaves, and the time elapsed since the

attachment of transmitters suggests that the extra mass may not

have been primarily responsible for their deaths. In addition, one

day after removing habitat in site C we were unable to track a

tagged female despite efforts to extend our sampling area,

suggesting either a malfunction of the transmitter, permanent

departure of the bat to a relatively distant area, or predation.

Finally, a lactating non-tagged juvenile that had been roosting

with his tagged mother since his birth in site B, disappeared by the

end of the experiment and before radiotransmitters were collected.

Discussion

Behavioral response to the loss of roosting resources
The results of our study demonstrate that, as predicted, the

removal of roosting resources within habitat patches had a

considerable effect on the behavior of individuals. In particular,

Figure 4. Maps of each one of the six study sites showing patches of plant species used by T. tricolor for roosting (white: H. imbricata,
light grey: H. latispatha, dark grey: C. lutea, stippled: Musa sp., simple-hatched: mixed C. lutea and H. latispatha, cross-hatched: mixed
C. lutea and H. imbricata). Dashed line indicates the removed area. Filled and opened triangles represent location of roosts of target group before
and after habitat removal, respectively. Crosses represent location of other groups.
doi:10.1371/journal.pone.0028821.g004
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we found that habitat removal was associated to a decrease in

roost-site preferences and/or species selectivity, and a change in

resource use from nearby, patchy resources to selection of more

scattered and distant roost sites. This resulted in an increase in the

mobility of individuals, and a decrease in social cohesion. These

behavioral responses were expected based on well-developed

models of resource selection, such as the optimal foraging theory

or optimal diet models, and on findings from a diversity of studies

addressing the correlation between spatial and social dynamics

and resource abundance and distribution.

In terms of resource preferences, theoretical models suggest that

animals should use a greater diversity of food items, even those of

low quality, when food is scarce, whereas individuals should

specialize on high-quality items as food becomes more abundant

[30–33]. Many empirical studies on a wide diversity of taxa

support the predictions of these foraging models (e.g., [60–62]),

and studies also show that these models can also be applied to

other resources [20]. Our study is the first to expand the

predictions of these models to roost-site selection in bats, as results

demonstrate that loss of preferred roosting resources increases the

diversity of sites used by individuals.

Because home range size is constrained by the need of

individuals to obtain sufficient resources in the smallest area

possible, the quality of the resources available to an animal

within the portion of habitat actually used is a major correlate of

its ranging behavior [63]. In this regard, several studies confirm

an increase in the size of an individual’s home range in response

to insufficient resources (e.g., [64–67]). Our results show that

bats increased the size of the areas used for roosting when

resources were depleted from a group’s home range. Interest-

ingly, while many other patches of H. imbicata were typically

located near the focal group’s home range, bats rarely occupied

these sites after their patch was removed. These patches were

always occupied by another group, which suggests that resident

groups may defend patches which are then unavailable to other

individuals.

The stability of social groups is affected by a number of intrinsic

and extrinsic factors, including aggression and cooperation levels,

relatedness among group members, parasite load, and group size

[68–73]. Home range size can also influence group stability if the

use of large areas implies higher rates of mortality due to an

increase in energetic demands and from an increased exposure to

predators [22,23], or if long-distance movements hinder the

transmission of signals used to coordinate social cohesion [74].

Thus, a decrease in group stability after habitat removal was

expected given the general increase in home range size and its

potential effect on mortality rates, and the fact that T. tricolor relies

on acoustic communication to convey information about roost

location [46,75].

Figure 5. Comparison of observed (solid line) and expected (dashed line) frequency of resource use before and after habitat
removal, with results from the chi-square goodness of fit test. Models tested were those that address whether bats used 1) a patchy roosting
resource, 2) their preferred plant species (H. imbricata), 3) the largest patch in the area, 4) the patch closest to the group’s core home range, and 5) a
roost located in a site that was not occupied by another group.
doi:10.1371/journal.pone.0028821.g005

Figure 6. Mean association indices before (filled circles) and
after (open circles) removing habitat at the six study sites. Error
bars represent mean6SD.
doi:10.1371/journal.pone.0028821.g006
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Loss of roosts and fitness consequences
Diurnal roosts are a valuable resource for bats because they

protect individuals from temperature extremes and predators

[24,76], and are one of the most important venues for social

interactions [77–79]. It is no surprise then that individuals exhibit

an immediate and considerable behavioral response to the loss of

roosting resources in order to find alternative roosting sites.

Notwithstanding, we hypothesize that this response may also be

responsible for a decrease in the survival of individuals. In this

respect, our results suggest that individuals must fly over larger

areas possibly for longer periods of time to locate suitable roost

sites after the loss of roosting resources in their habitat patch,

which most likely increases daily energetic expenditure [80].

Significant increases in energetic expenditure could result in

greater mortality rates if individuals are unable to compensate this

energy loss by increasing food intake [81]. In addition, greater

energetic expenditure during lactation could result in severe

limitations to energy allocation towards dependent young and a

subsequent increase in levels of juvenile mortality [82]. An

increase in search time after the loss of roost-sites also means

that individuals could suffer from greater rates of predation [83],

and that the use of suboptimal roosts (i.e., more opened leaves)

could also render individuals more vulnerable to predators that

rely on visual cues to locate prey and to extreme fluctuations in

environmental conditions.

In addition to greater mortality rates due to increased energetic

expenditure and predator vulnerability, the loss of roosting

resources could also have detrimental effects on fitness due to

changes in cooperative interactions. Many species of bats rely on

some form of cooperative behavior to increase young survival,

defend feeding resources, share food, or locate roost sites [46,84].

Because reduced encounter rates are known to hinder reciproca-

tion [26], we speculate that a decrease in group cohesion due to

changes in the availability of roosting resources and/or changes in

home range size could hinder cooperation among group members.

If individuals rely on information transfer to locate clumped and

unpredictable resources, a decrease in cooperation rates among

group members could reduce resource acquisition efficiency,

significantly increasing search times and the risks and costs

incurred during this process.

Behavioral and functional specializations and population
persistence

Our findings of roost-site selection before and after habitat

removal suggest that T. tricolor exhibit behavioral specializations

in which individuals appear to select specific plant species for

roosting but may use others when the former are unavailable.

Many studies have shown that bats generally select roosts that

provide a set of conditions that favor energetic savings and

predator avoidance, even though they may be well suited to

roost at a greater range of sites and are known to do so if ideal

roosts are not available [24,85,86]. In addition to our

observations of behavioral specialization, and based on the lack

of use of other structures beside furled leaves despite their

sudden disappearance from habitat patches and their relative

scarcity at some sites, our study confirms that morphological

specializations in T. tricolor may restrict it predominantly (or

exclusively) to the use of furled leaves. At least 5 other species of

bats have adhesive organs on their wrists and ankles [87,88], and

some appear to roost also primarily in the smooth surfaces of

developing furled leaves [89]. This suggests that they could be

equally restricted in their use of roost sites, and may exhibit

similar behavioral responses to the loss of roosting resources as

those observed in T. tricolor.

Most research to date shows that functional specializations may

place species at greater risk of extinction than behavioral

specializations [4,5]. While the adhesive organs of sucker-footed

and disc-winged bats have allowed them to exploit a ubiquitous

resource in many tropical habitats and avoid competition with

other species for roost sites, their extreme reliance on this type of

roost could also render them extremely vulnerable to major

changes in plant availability, particularly if there are high costs

associated with long-distance movements that would limit

colonization of alternative patches. Foliage gleaners such as T.

tricolor [39] forage in cluttered spaces and have wing morphologies

that increase manoeuvrability at the expense of aerodynamic

efficiency and speed. Thus, compared to insectivorous species that

forage above the canopy, foliage gleaners probably incur greater

energetic expenditure during long-distance flight than bats

specialized for aerial hunting [41]. Long-distance movements

could be further constrained in species such as T. tricolor that rely

on a patchily distributed resource because the landscape provides

little connectivity among habitat patches. This problem could be

aggravated if the species in question exhibits territorial behavior,

as this further reduces the number of resources available to

dispersing individuals.

Conclusions
Understanding the effects of disturbances on individuals,

populations, and species, makes it possible to successfully guide

conservation efforts and manage ecological resources. Unfortu-

nately, given the technical difficulties, financial cost, and conflicts

with conservation-related initiatives inherent to experimental

perturbations of natural habitats, isolating the response of

organisms to specific changes in their environment has proven

challenging. Behavioral strategies are leading indicators for

conservation purposes as they are linked to fitness and hence

can be used to forecast population dynamics, and they exhibit

immediate changes to altered environmental conditions [90]. Our

study shows that experimental perturbations to gauge the

behavioral response of a specialist mammal to specific changes

in its environment and to predict the effect of resource loss on

demographic parameters, such as dispersal and mortality, are

feasible, particularly if the study species relies on conspicuous and

easily modifiable resources. Our study also demonstrates that the

loss of a critical resource in a specialist bat elicited behavioral

responses that may reduce fitness by potentially increasing

energetic expenditure, predator exposure, and a decrease in

cooperative interactions. Despite these potential risks, and the fact

that bats faced an immediate and considerable loss of a critical

resource, individuals never used alternative roost-sites, suggesting

an extreme specialization that could ultimately jeopardize the

long-term persistence of this species’ local populations.
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