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ABSTRACT

Aim Much research in conservation biogeography is fundamentally dependent

on obtaining reliable data on species distributions across space and time. Such

data are now increasingly being generated using various types of public surveys.

These data are often integrated with occupancy models to evaluate distribu-

tional patterns, range dynamics and conservation status of multiple species at

broad spatio-temporal scales. Occupancy models have traditionally corrected

for imperfect detection due to false negatives while implicitly assuming that

false positives do not occur. However, public survey data are also prone to

false-positive errors, which when unaccounted for can cause bias in occupancy

estimates. We test whether false positives in a dataset collected from public sur-

veys lead to overestimation of species site occupancy and whether estimators

that simultaneously account for false-positive and false-negative errors improve

occupancy estimates.

Location Western Ghats, India.

Methods We fit occupancy models that simultaneously account for false posi-

tives and negatives to data collected from a large-scale key informant interview

survey for 30 species of large vertebrates. We tested their performance against

standard occupancy models that account only for false negatives.

Results Standard occupancy models that correct only for false negatives tended

to overestimate species occupancy due to false-positive errors. Occupancy mod-

els that simultaneously accounted for false positives and negatives had greater

support [lower Akaike’s information criterion (AIC)] and, consistent with pre-

dictions, generated systematically lower occupancy estimates than standard

models. Furthermore, accounting for false positives improved the accuracy of

occupancy estimates despite the added complexity to the statistical estimator.

Main conclusions Integrating large-scale public surveys with occupancy mod-

elling approaches is a powerful tool for informing conservation and manage-

ment. However, in many if not most cases, it will be important to explicitly

account for false positives to ensure the reliability of occupancy estimates

obtained from public survey datasets such as key informant interviews, volun-

teer surveys, citizen science programmes, historical archives and acoustic

surveys.
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INTRODUCTION

Understanding the distribution of species and the drivers

underlying distributional patterns is of prime interest in con-

servation biogeography (Brown, 1984; Whittaker et al., 2005;

Lomolino et al., 2010; Richardson & Whittaker, 2010). The

accurate assessment of patterns of species distributions

requires that imperfect detection be accounted for (MacKen-

zie et al., 2002, 2006; Tyre et al., 2003). Imperfect detection

due to false negatives yields underestimates of the extent of

species distributions (MacKenzie et al., 2002). Occupancy

modelling, a versatile tool in applied ecological research for

estimating the proportion of area occupied by a species and

assessing spatio-temporal trends in species distributions

(MacKenzie et al., 2006; Royle & Dorazio, 2008; Karanth

et al., 2011; Pillay et al., 2011), has traditionally corrected for

false negatives. False negatives or non-detection errors occur

when surveyors fail to detect a species or any evidence of its

presence at a site even when the site is occupied by that spe-

cies (MacKenzie et al., 2002, 2006). Much less attention,

however, has been paid to imperfect detection due to false

positives, which occur when organisms are detected but mis-

identified or when detections are wrongly recorded at sites

where species are truly absent (Royle & Link, 2006; McClin-

tock et al., 2010a,b; Miller et al., 2011). Imperfect detection

due to false positives can yield overestimates of the extent of

species distributions (Royle & Link, 2006; Miller et al., 2011;

Molinari-Jobin et al., 2012).

Accounting for imperfect detection in an occupancy mod-

elling framework involves either conducting multiple surveys

to collect replicate observations (minimum two) of detec-

tions and non-detections for a species in a site (MacKenzie

et al., 2006) or modelling detection probability as a continu-

ous process (Garrard et al., 2008; Guillera-Arroita et al.,

2011). Collecting the necessary data to fit these models is

often a major limiting factor impeding the widespread appli-

cation of occupancy models for investigating species distribu-

tions, especially over large spatio-temporal scales. To get

around the costs of obtaining replicate detection/non-detec-

tion data at large spatio-temporal scales, scientists have come

up with innovative and economical public survey methods.

Detection histories generated from key informant interviews

(Karanth et al., 2009; Pillay et al., 2011; Zeller et al., 2011),

volunteer surveys (K�ery et al., 2010a; Sewell et al., 2010), cit-

izen science programs (K�ery et al., 2010b; Yu et al., 2010),

historical archives (Karanth et al., 2010) and acoustic call

surveys (Simons et al., 2007; McClintock et al., 2010a,b) are

increasingly being integrated with occupancy models. The

novel integration of these public survey methods to occu-

pancy models has vastly expanded the scope of occupancy

estimation, offering efficient and cost-effective means of

modelling the distributions of multiple species at broad spa-

tio-temporal scales. However, in addition to false-negative

error, these methods may be prone to imperfect detection

due to misidentification and false-positive error (McKelvey

et al., 2008; Fitzpatrick et al., 2009; Molinari-Jobin et al.,

2012). If unaccounted for, even small rates of false-positive

error can lead to substantial bias in estimators of occupancy

(Royle & Link, 2006; Miller et al., 2011; Molinari-Jobin

et al., 2012) as well as in estimators of the vital rates of colo-

nization and extinction when dynamic occupancy models are

used (McClintock et al., 2010a; Miller et al., 2013).

The aim of this study is to draw attention to the funda-

mental issue of species misidentification and overestimation

of species distributions when occupancy modelling is inte-

grated with public survey datasets. We present the first appli-

cation of the recently developed single-season false-positive

occupancy models (Miller et al., 2011) to simultaneously

correct for false-positive and false-negative errors in detec-

tion histories from key informant interviews. These inter-

views recorded sightings and indirect detections (Pillay et al.,

2011) of 30 species of large vertebrates (Table 1) in the Wes-

tern Ghats biodiversity hotspot in India (Fig. 1) and were

obtained from three different key informant groups: Forest

Department field personnel (FD), forest-dwelling local com-

munities (LC) and experts (comprising wildlife scientists and

professional wildlife photographers/filmmakers) (EX). These

data were analysed using the estimator proposed by Miller

et al. (2011), which we refer to as the full occupancy estima-

tor because it accounts for both false-positive and false-

negative errors when estimating occupancy probabilities. This

estimator can be applied to improve occupancy estimates

when detections can be classified into two or more subsets:

at least one subset of a type or method for which false posi-

tives can be assumed not to occur (certain detections) and

one or more subset(s) of a type or method for which false

positives could occur (uncertain detections). Thus, the full

estimator always uses both certain and uncertain data types.

We made the assumption that the subset of detection histo-

ries collected from experts was free from misidentification

errors (Fitzpatrick et al., 2009; Yu et al., 2010; Molinari-

Jobin et al., 2012). We classified this subset as certain due to

the familiarity of the experts we interviewed with the species

of interest, our sampling units in the Western Ghats as well

as our survey methods. We assumed that false positives

could occur in the remaining observations from Forest

Department field personnel and forest-dwelling local com-

munities (collectively referred to as non-experts) and classi-

fied these as uncertain. We compare these results to

estimates using the standard occupancy estimator originally

outlined by MacKenzie et al. (2002).

Our objectives in this study were to: (1) determine

whether the data were consistent with the occurrence of false

positives in uncertain observations by non-experts, (2) deter-

mine whether including uncertain observations together with

certain observations could improve the accuracy of occu-

pancy estimates when false positives were accounted for in

statistical models and (3) summarize our results for esti-

mated true- and false-positive detection probabilities using

key informant surveys and provide insights into others

implementing similar analyses with different types of public

survey datasets. To meet our first objective, we tested the
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following two specific predictions. First, we predicted that if

uncertain data included false-positive errors, occupancy esti-

mates using standard occupancy models that account only

for false negatives should be greater when only uncertain

data are used than when only certain data are used (Predic-

tion 1A). This prediction results because unaccounted for

false-positive errors lead to positive bias when estimating

occupancy (Royle & Link, 2006; Miller et al., 2011). Second,

we predicted that if uncertain data included false-positive

errors, occupancy estimates obtained from the full estimator

that explicitly accounts for these false positives should be

lower than estimates obtained from the standard estimator

with combined certain and uncertain data. Further, models

using the full estimator should have greater support [lower

Akaike’s information criterion (AIC) values] than equivalent

models using the standard estimator (Prediction 1B).

Accounting for false positives adds complexity to the sta-

tistical estimator, which may negate any added benefit of col-

lecting and including uncertain data. To meet our second

objective, we tested whether this is indeed the case by com-

paring the precision and bias of occupancy estimates gener-

ated from the full estimator to the precision and bias of

estimates generated from the standard estimator with (1)

only certain data and (2) combined certain and uncertain

data. We predicted that in comparison to the approach usingT
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Figure 1 The Western Ghats of India depicting study area

(outlined in black, Inset) and the 395 ranges sampled to

generate detection histories from key informant interviews.
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the full estimator, standard estimates using only certain data

would be less precise due to reduced sample size while stan-

dard estimates using combined data would be biased due to

false positives in the uncertain subset (Prediction 2).

With respect to the third objective, we present estimates

of true- and false-positive detection probabilities as a func-

tion of key informant group. By distinguishing true- and

false-positive detection types, we were able to explicitly

account for variation in detection probability among key

informant groups or multiple observer types, which may

have an influence on occupancy estimates (K�ery et al.,

2010b; McClintock et al., 2010a). We discuss the wide appli-

cations of this statistical modelling technique to remove bias

due to non-detection and misidentification errors (McKelvey

et al., 2008; Dickinson et al., 2010; Hochachka et al., 2012)

and improve species site occupancy estimates when inte-

grated with various types of public survey datasets.

METHODS

Study area and design

The Western Ghats biodiversity hotspot (8°N–21°N) (Myers

et al., 2000) is a 1600-km-long mountain chain, which runs

all along the west coast of the Indian peninsula (Fig. 1).

These mountains (300–2700 m a.s.l.) stretch across an area

exceeding 100,000 km2, although there is considerable varia-

tion in how different authors define its precise ecological

boundaries, and hence, its exact area (Das et al., 2006; CEPF,

2007; Gadgil et al., 2011). For the purpose of this study, we

chose the ecological boundary defined by CEPF (2007)

(Western Ghats Portal www.thewesternghats.in/map) within

which our 89439.43 km2 study area extended from Kanyaku-

mari in Tamil Nadu as the southern limit to Mahabaleshwar

in Maharashtra as the northern limit (Fig. 1 Inset, outlined

in black). We used forest ranges (hereinafter called sites),

which are standard forest administrative units both within

and outside protected areas as our sampling units. Our study

area contained 395 sites [mean area (�SE) = 226.43 km2

(� 9.15)]. We carried out key informant interviews within

each site between April 2008 and February 2012.

We conducted 1760 structured interviews in the local lan-

guage with 2318 knowledgeable key informants comprising

Forest Department field personnel (610), forest-dwelling local

communities (1680) and experts (28) to generate detection

histories for 30 species of large vertebrates (body

mass > 2 kg; Table 1). Non-experts provided data

(1–10 detections/non-detections) for 394 sites while experts

provided data (1–6 detections/non-detections) for 303 sites.

Twenty-one experts provided data for more than one site.

Our final combined dataset from non-experts and experts

comprised 3–14 replicates (detection/non-detection data) in

each site [mean replicates/site (�SE) = 7.46 (� 0.14)]. 398

of 1760 interviews were conducted as group interviews. We

ensured that key informants comprising each group were all

from the same category, that is, either Forest Department

field personnel or forest-dwelling local communities. Experts

were not interviewed in groups. We were careful not to aver-

age detections reported by multiple informants during group

interviews. Rather, if any one informant in a group reported

detecting a species, it was recorded. Thus, different infor-

mants in a group could report detections of different species.

Consequently, group interviews functioned in a manner simi-

lar to individual interviews at a species by species level, that

is, detection probability for each species in a group interview

was a function of an individual informant in the group rather

than the group as a whole. Table 1 shows the replication

obtained, that is, the total number of detections and non-

detections for each species by each key informant group.

Field interviews were conducted in an identical manner to

the methods detailed in Pillay et al. (2011). However, despite

exercising appropriate care to ensure quality and reliability of

data (see Pillay et al., 2011), we acknowledge that there will

remain a nonzero probability of misidentification error enter-

ing into detection histories generated from key informant

interviews. This nonzero false-positive probability may be

caused by various factors beyond the control of surveyors.

These include: uncertainty about the actual extent of the

boundaries of a site, deliberate falsification of detections of

species even if not encountered, and inadvertent errors on the

part of the surveyor in perfectly discerning true detections

from inadvertent/deliberate false detections in all interviews.

Analysis

We used recently developed false-positive occupancy models

(Miller et al., 2011), which incorporate additional informa-

tion about the degree of certainty in a detection and allow

data from multiple survey/detection methods to be modelled

together. Miller et al. (2011) describe two general single-

season modelling approaches to estimate occupancy when

false-positive detections occur. The first approach, the multi-

ple detection state model, is suitable for cases wherein a sin-

gle detection method is used which may result in two types

of detections: uncertain (may include false positives) and cer-

tain (does not include false positives). The second approach,

the multiple detection method model, tackles cases wherein

multiple survey/detection methods are used and each method

differs in the degree of certainty that a given detection is

true. For instance, in a case where two methods are used, the

first may include false-positive detections whereas the second

is assumed not to contain false positives. In our example, we

use the multiple detection method model and consider inter-

views of non-experts as the first (uncertain) method where

detections may include false positives. Interviews of experts

comprise the second (certain) method where detections are

assumed not to contain false positives.

Following the notation of Miller et al. (2011), we use p11
to denote the true-positive detection probability for non-

experts (uncertain data) and r11 to denote the true-positive

detection probability for experts (certain data). We denote

false-positive detection probability using p10 for non-experts
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and assume this probability to be zero for experts. Following

standard notation, we use w to denote the occupancy proba-

bility for a site. In the full model described by Miller et al.

(2011), all of these parameters are estimated. The standard

occupancy estimator of MacKenzie et al. (2002) can be seen

as a special case of the full model where p10 is fixed to be

zero for all key informant groups. Thus, both full and stan-

dard models can be estimated using the same basic likeli-

hood equation, making it possible to compare the two

estimators using AIC (Burnham & Anderson, 2010).

We tested Prediction 1A by fitting standard occupancy

models (MacKenzie et al., 2002) separately to uncertain

(non-expert) and certain (expert) data. To test Prediction

1B, we fitted and compared five models for each species:

three standard models in which false positives were assumed

not to occur and two full models in which false positives

were explicitly modelled. For the scenario involving standard

models, the first model was parameterized to have equal

true-positive detection probability for all three key informant

groups [w(.), p11(.) = r11(.), p10(fixed = 0)]. The second

model was parameterized to have equal true-positive detec-

tion probabilities for both non-expert key informant groups

but different true-positive detection probability for experts

[w(.), p11(.), r11(.), p10(fixed = 0)]. The third model in this

scenario was parameterized to have different true-positive

detection probabilities for both non-expert key informant

groups as well as for experts [w(.), p11(FD 6¼ LC), r11(.),

p10(fixed = 0)]. For each of these three standard estimators,

false positives were assumed not to occur and thus p10 was

fixed to zero. When false positives were explicitly modelled

using the full estimator, the first model was parameterized to

have equal true- and false-positive detection probabilities for

both non-expert key informant groups [w(.), p11(.), r11(.),

p10(.)], while the second was parameterized to have different

true and false-positive detection probabilities for both non-

expert key informant groups [w(.), p11(FD 6¼ LC), r11(.),

p10(FD 6¼ LC)]. In both of the above full models, true-

positive detection probability (r11) using the second method

(certain detections from experts) was allowed to differ from

the non-expert key informant groups. Finally, we tested Pre-

diction 2 by comparing the precision and bias of occupancy

estimates generated by full models to the precision and bias

of occupancy estimates generated by standard models fitted

to (1) only certain data and (2) combined certain and

uncertain data.

We fitted all models in the maximum-likelihood frame-

work of inference using the software PRESENCE 4.4 (Hines,

2006) called using R (v. 2.15.1; R Development Core Team,

2012). We used AIC (Burnham & Anderson, 2010) to choose

among alternative parameterizations of models allowing and

not allowing for false positives.

RESULTS

Occupancy estimates for non-experts and experts were con-

sistent with Prediction 1A that false positives occur in the

non-expert data. For 26 of 30 species, mean occupancy esti-

mates generated from standard estimators fitted to uncertain

data were greater than mean occupancy estimates generated

from the same estimators fitted to certain data (Fig. 2). The

probability of this occurring by chance was < 0.0001

(v2 = 16.13, 1 d.f.). For 18 of the 30 species, 95% confidence

intervals did not overlap for the approach. On average, occu-

pancy estimates were 0.16 greater for non-experts than for

experts (SD = 0.19), providing strong support for Prediction

1A. Certain data from experts were sparse for some species

(Table 1). In some (e.g. FHA, MPH, IGH and MUG)

although not all (e.g. HYN and NTR) cases, this led to very

low precision of occupancy estimates (Fig. 2).

Comparisons of statistical models using the combined

dataset were also consistent with false positives occurring in
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Figure 2 To test the prediction that unaccounted for false-

positive detections among non-expert observations would bias

estimates high (Prediction 1A), we used standard occupancy

models to compare occupancy estimates based on only expert

observations (grey) to estimates based on only non-expert

observations (black). Consistent with the prediction, 26 of 30

species had greater occupancy estimates from the non-expert

data than the expert data. Error bars represent 95% confidence

intervals.
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the non-expert data. When unaccounted for, these detection

errors caused systematic overestimation of occupancy with

estimates from the standard model being 0.09 greater, on

average, than those from the full model (SD = 0.09). For 29

of 30 species, a full model, where false positives were

accounted for, had the lowest AIC score (Table 2). Figure 3

shows variation in occupancy estimates between the most

parsimonious full and standard models. For all species, occu-

pancy estimates generated from full models are systematically

lower than those generated from standard models. The con-

sistent support for models that accounted for false positives

and systematically higher occupancy estimates when false

positives were not accounted for indicate strong support for

Prediction 1B.

Figure 4 compares the precision and potential bias of occu-

pancy estimates generated by full models to the precision and

Table 2 DAIC values for competing models used to estimate occupancy of 30 species of large vertebrates in the Western Ghats. The

standard occupancy model only accounted for false-negative errors (MacKenzie et al., 2002), while the full occupancy model accounted

for both false-positive and false-negative errors (Miller et al., 2011). In all but one case, the best model with the lowest Akaike’s

information criterion (AIC) value used the full occupancy parameterization (Prediction 1B). Both uncertain and certain datasets were

used to run all standard and full models for testing Prediction 1B

Species

DAIC

Standard occupancy model* Full occupancy model†

Model 1 Model 2 Model 3 Model 1 Model 2

TGR 130.19 70.59 61.23 1.06 0.00

LPD 197.15 63.39 45.48 18.59 0.00

DHL 589.15 124.64 124.26 0.00 2.55

JKL 492.58 151.64 145.79 52.00 0.00

HYN 83.72 36.00 18.00 20.43 0.00

SLB 249.67 52.72 54.69 9.26 0.00

ELP 288.09 108.16 108.95 0.00 1.51

GAR 381.72 109.14 110.24 0.00 2.43

SAM 411.03 59.20 55.51 0.00 1.84

CHT 421.19 138.02 138.51 12.49 0.00

MJK 739.76 72.33 66.63 11.81 0.00

MDR 937.53 54.93 48.06 11.53 0.00

FHA 161.10 48.05 49.99 16.93 0.00

NTR 62.28 44.60 46.02 0.00 1.98

WPG 908.33 28.36 39.79 18.24 0.00

NLG 126.76 43.74 45.74 3.55 0.00

CLG 360.21 45.42 39.70 3.31 0.00

LTM 35.67 18.61 17.96 7.89 0.00

BNT 781.28 51.09 51.79 0.00 1.44

POR 612.44 146.14 51.69 100.30 0.00

IGS 595.32 67.98 69.60 0.00 0.38

GHB 350.87 21.24 16.44 2.91 0.00

MPH 210.03 59.38 35.64 40.11 0.00

MGH 611.17 112.87 77.19 47.48 0.00

IGH 169.20 30.07 2.40 26.93 0.00

GJF 1152.53 22.08 21.93 38.39 0.00

PFL 769.86 80.57 65.23 16.06 0.00

KCB 385.25 74.52 39.20 46.01 0.00

PYT‡ 767.77 30.41 0.00 118.20 10.21

MUG 271.27 106.80 108.46 14.62 0.00

*Model 1 [w(.), p11(.) = r11(.), p10(fixed = 0)] – true-positive detection probability equal across all three key informant groups; Model 2 [w(.),
p11(.), r11(.), p10(fixed = 0)] – true-positive detection probability equal across both non-expert key informant groups but differed for experts;

Model 3 [w(.), p11(FD 6¼ LC), r11(.), p10(fixed = 0)] – true-positive detection probability differed between all three key informant groups.

†Model 1 [w(.), p11(.), r11(.), p10(.)] – true-positive detection probability equal across both non-expert key informant groups but differed for

experts. False-positive detection probability equal across both non-expert key informant groups; Model 2 [w(.), p11(FD 6¼ LC), r11(.), p10(FD 6¼
LC)] – true-positive detection probability differed between all three key informant groups. False-positive detection probability differed between

both non-expert key informant groups.

‡This was the only species for which the standard occupancy model that did not account for false positives had a lower AIC value than the full

occupancy model that did account for them.
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potential bias of occupancy estimates generated by standard

models fitted to (1) only certain data and (2) combined cer-

tain and uncertain data. When the standard estimator was

used with only certain data, we generally observed similar

occupancy estimates to the full model. However, standard

errors were smaller on average when the full model was used,

in some cases dramatically so. In the case where we used the

standard estimator with the combined data, precision was

similar to the full model. This result is likely to be misleading,

however, as there was evidence of systematic overestimation

of occupancy by the standard estimator. Overall, these results

affirmed Prediction 2 that including uncertain data will

improve the accuracy of occupancy estimates.

The estimates of true- and false-positive detection proba-

bilities for the most parsimonious full and standard occu-

pancy models are summarized in Table 3.

DISCUSSION

Species site occupancy data are integral to several key areas

of research in conservation biogeography such as species

inventories and mapping surveys, species distribution model-

ling, understanding distributional dynamics (colonization,

extinction, persistence) and conservation planning (Richard-

son & Whittaker, 2010). While species site occupancy data-

sets collected from public surveys have enormous potential

to address crucial issues pertaining to conservation biogeog-

raphy over large spatial and temporal scales (Devictor et al.,

2010), parameter estimates and inferences from these under-

takings may be biased by uncertainty due to two types of

observational errors: non-detection and misidentification.

Occupancy models were initially developed to address the

issue of non-detection or false negatives, while an implicit

assumption was that misidentification or false-positive errors

did not occur (Royle & Link, 2006). The integration of occu-

pancy modelling with detection histories generated from key

informant interviews is becoming an increasingly popular

and economical method to estimate species distributions

(Karanth et al., 2009; Zeller et al., 2011) and range dynamics

(Karanth et al., 2010; Pillay et al., 2011) over broad spatio-

temporal extents. This popularity of public surveys to gener-

ate species site occupancy data is likely to increase in the

future as they represent cost-effective tools in conservation

biogeography (Devictor et al., 2010). We are aware of several

studies that are currently in progress and are using similar

methods to collect occupancy data. While all possible pre-

cautions must be taken by surveyors in the field to ensure

quality and reliability of data from key informant interviews

and other types of public surveys, it is important to acknowl-

edge and statistically account for false-positive errors that

such data may include despite all precautions.

Our estimates of na€ıve occupancy are much higher for

uncertain data than for certain data (Table 1), possibly indi-

cating the presence of false positives in the former dataset.

However, na€ıve estimates have to be interpreted with caution

because they are likely to reflect underlying biases in detec-

tion probabilities of different key informant groups. To

obtain realistic occupancy estimates, statistical estimators

need to distinguish heterogeneity in true- and false-positive

detection probabilities among sites by incorporating addi-

tional information about the detection process such as multi-

ple survey methods and the degree of certainty in a detection

method (Miller et al., 2011). We devise a simple protocol for

assessing the reliability of detection histories from key infor-

mant interviews by classifying detection histories into certain

and uncertain categories conditional on the key informant

group they were obtained from. We show that standard

occupancy models fitted to uncertain data lead to a higher

estimate of the proportion of area occupied by a species
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Figure 3 To test the prediction that occupancy estimates from

full occupancy models should be lower than those from

standard occupancy models after correcting for false positives

(Prediction 1B), we compared occupancy estimates from full

(grey) and standard occupancy models (black). Consistent with

the prediction, all species had lower estimates of occupancy

from full occupancy models. Error bars represent 95%

confidence intervals. Both uncertain and certain datasets were

used to run all standard and full models for testing Prediction

1B.
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compared with estimates from the same models fitted to cer-

tain data. This indicates a higher probability of false positives

in uncertain data, which in turn lead to overestimation of

the proportion of sites occupied by a species and introduce

substantial bias even after false negatives are accounted for

by standard models.

We then demonstrate that integrating detection histories

from key informant interviews with full occupancy models

(Miller et al., 2011) has greater support (lower AIC) and

substantially improves occupancy estimates as opposed to fit-

ting standard models (MacKenzie et al., 2002) to unclassified

data. Statistical models for assessing occupancy with data

containing false positives have previously been developed

(Royle & Link, 2006) but have only been applied in a limited

manner. The statistical estimator we use here (Miller et al.,

2011) has greater utility in dealing with uncertain detections

by allowing multiple survey methods and distinguishing het-

erogeneity in true- and false-positive detection probabilities

among key informant groups to generate more reliable occu-

pancy estimates.

Traditional occupancy modelling approaches would either

throw out uncertain data to meet the assumption of zero

false-positive errors and generate estimates with only cer-

tain data or use both data types and an estimator that

does not account for false positives. The former approach

reduces the precision of occupancy estimates as, in many

cases, certain data are likely to be more difficult and/or

costly to obtain and therefore sparse. The latter approach

violates a key assumption of the standard estimator and

can cause bias in occupancy estimates. We demonstrate

that including uncertain data and using the full model

adds value in terms of improving the precision of occu-

pancy estimates, as opposed to discarding such data to esti-

mate occupancy with only sparse certain data and the

standard model. While our estimates from the standard

model with combined data are as precise as those from the

full model, the standard model systematically overestimates

occupancy compared with the full model (Fig. 4), which is

consistent with estimator bias. The fact that occupancy

estimates for some species with sparse certain data

(Table 1) had very low precision when only certain data

were modelled with the standard estimator (Fig. 2) is con-

sistent with our point that including uncertain data from

non-experts is useful. As long as false positives are explic-

itly accounted for in a statistical estimator that can distin-

guish between true- and false-positive detections among

sites (Royle & Link, 2006; Miller et al., 2011), including

uncertain data are likely to yield much more precise occu-

pancy estimates than simply relying on certain data (Miller

et al., 2011).

In most cases, the estimated false-positive error rate is rela-

tively small and reasonable (Table 3). However, for four spe-

cies (highlighted in Table 3), this value appears to be similar

to or greater than the true-positive detection probability.

These species are very common in the Western Ghats and

have been reported widely. Consequently, estimated occu-

pancy for these species approaches 1 when only the uncertain

data are used and thus there are few or no unoccupied sites to

Figure 4 We compared occupancy

estimates (w) and standard errors (SE)

for the full model to cases where only

certain data were included and where

combined data were included with the

standard model where false positives are

assumed not to occur. When uncertain

data were excluded from the analysis,

standard occupancy estimates were

similar to those from the full estimator.

However, standard errors were much

larger indicating a loss of precision due

to smaller sample sizes. Alternatively,

when false positives were unaccounted

for using combined data with the

standard estimator, precision was similar

or better to the full model. However,

there was evidence of a systematic bias

leading to overestimation of occupancy.
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estimate a false-positive error rate. Royle & Link (2006) note

that for their estimator, when occupancy is 1, the p10 parame-

ter instead explains heterogeneity in true-positive detections

just as in a finite mixture model (Royle, 2006). We believe the

estimates for these four species reflect a similar process. We

recommend that when false-positive detection probabilities

are near true-positive detection probabilities, full models

should be discarded and inferences should be made using the

standard model where the false-positive detection probability

is fixed to be 0. In typical cases where most species have

occupancy probabilities much lower than 1, this should not

be a major issue.

A limitation with our approach is that we do not know

truth. We assume that the estimates that explicitly account

for false positives have lower bias and that systematic differ-

ences observed in the comparison of estimates from the full

and standard model with the combined data result from bias

due to false positives. However, the results of the compari-

sons used to test our predictions are consistent with this

assumption. Furthermore, work using simulated data shows

that not accounting for false positives when they occur does

lead to systematic bias (McClintock et al., 2010a; Miller

et al., 2011). Our results are also premised on false positives

not occurring in detection histories collected from experts

(Fitzpatrick et al., 2009; Yu et al., 2010; Molinari-Jobin et al.,

2012). We had strong reasons to believe that false-positive

errors should be negligible in this key informant group, espe-

cially compared with our other groups. However, even

experts can be prone to misidentification error (Miller et al.,

2012). While benchmarking on experts represents an

improvement over completely ignoring false-positive errors,

caution may still be advised.

A key obstacle to the accuracy of citizen science-based distri-

bution modelling approaches in informing conservation plan-

ning and management (Danielsen et al., 2005; Bonney et al.,

2009; Sullivan et al., 2009; K�ery et al., 2010a; Sewell et al.,

2010; Pillay et al., 2011) is the inherent likelihood for non-

detection, misidentification and misclassification in such data-

sets (McKelvey et al., 2008; Dickinson et al., 2010; Hochachka

et al., 2012). Despite this, analyses of these data rely in many

cases on various simplifying assumptions and rarely take into

account observation uncertainty. The little prior effort in deal-

ing with false-positive errors has largely depended on

approaches to reduce misidentification at the stage of field

data collection (Molinari-Jobin et al., 2012). Although it is

imperative to make efforts to reduce false positives with proper

field sampling protocols, this is unlikely to eliminate errors,

thus making it important to estimate and account for false

positives as part of statistical analyses (Miller et al., 2012).

Advances in statistical methods will continue to play a key role

in improving inferences from data collected through various

public survey methods where false positives are likely to be a

cause for concern. As we demonstrate here (see also Hanks

et al., 2011), benchmarking to data collected by taxon experts

is one approach to deal with potential misidentification. In

many cases, it may not be possible to collect expert observa-

tions across large scales. However, it is possible to fit the type

of models we fit here when only a subset of sites is sampled

using a method that can be assumed to be free from misidenti-

fication errors. Uncertain data, in many cases, may be less dif-

ficult and/or costly to collect (Molinari-Jobin et al., 2012), and

we show that their inclusion along with certain data can

improve occupancy estimates when modelled using the full

estimator.

Occupancy and detection probability parameters typically

vary across a landscape. These parameters can be modelled

using landscape and environmental covariates to improve

estimates and further reduce bias arising from detection

heterogeneity (Miller et al., 2011). Including covariates that

predict false-positive detection probabilities may be especially

useful for modelling this source of observation error (Miller

et al., 2013). We recommend that future work with such data-

sets explore the use of predictors to further improve estimates.

Another potentially fruitful area for exploration is using prior

information to estimate false-positive rates using Bayesian

approaches. False-positive error rates may be derived from the

literature (e.g. Miller et al., 2012) or may be estimated using

pilot studies. When studying range dynamics of species under-

going declines in distribution, false positives may lead to

biased estimates of the extent of decline in occupancy and in

the vital rates of colonization and extinction (McClintock

et al., 2010a). This in turn may lead to flawed management

decisions. It thus becomes vital to obtain unbiased estimates of

occupancy and vital rates, which can reliably inform ecological

research and management efforts for species of conservation

concern. If a subset of detections is of a type or method

wherein false positives can be assumed not to occur, the statis-

tical models we test here are widely applicable to conservation

biogeography studies that harness a variety of public survey

occupancy datasets prone to both non-detection and misiden-

tification errors.
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