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Abstract

Beta (β)-diversity varies along environmental gradients, and understanding

what drives such variation might provide insights into the factors that shape

community structure from place to place. Here, we delineate the spatial

pattern of β-diversity, analyze its underlying mechanisms, and examine varia-

tion in functional traits of butterflies along an extensive elevational gradient

(300–3000 m) in the eastern Himalaya, the largest mountain system in the

world. We sampled butterflies at 16 sites along this gradient using a fixed-

width point count method and estimated habitat variables at each site. We

obtained trait data from our field collections and secondary sources as neces-

sary. We partitioned β-diversity into its turnover, nestedness, balanced varia-

tion, and abundance gradient components. We used generalized dissimilarity

modeling to determine the underlying mechanisms affecting the pattern of

β-diversity along the gradient. The pattern of β-diversity in butterflies at adja-

cent sites exhibited a mid elevation peak. Dissimilarity between sites increased

with the increase in distance between the sites. Turnover or the balanced vari-

ation made major contributions to the overall β-diversity. Among the set of

factors, actual evapotranspiration was positively correlated with β-diversity.
The trait-based analysis revealed biogeographic affinity as the best predictor of

community composition along the elevational gradient. The high β-diversity
arises from turnover rather than nestedness component. We conclude that the

pattern of β-diversity of butterflies in the Himalaya is largely due to environ-

mental filtering rather than geographic extent.
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INTRODUCTION

Over the past few decades, there has been a near constant
effort to understand variation in biological diversity

across spatial and environmental gradients. However,
many of the studies have focused on determining the pat-
terns of species richness at local (α-diversity) or larger
scales (γ-diversity) (Fleishman et al., 2005; McCain &
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Grytnes, 2010; Rana et al., 2019). Beta (β)-diversity is gen-
erally defined as variation in the composition of species
among sites (Anderson et al., 2011) and provides the link
between α-diversity at local scales and γ-diversity at more
regional scales. β-diversity might also vary along the spa-
tial gradients (Anderson et al., 2011; Whittaker, 1960),
and understanding what drives such variation could pro-
vide insights into the factors that shape community struc-
ture (Kraft et al., 2011), patterns of α-diversity across sites
(da Silva et al., 2018), or help formulate landscape-level
conservation strategies by identifying areas that should
be prioritized for conservation (Gomes et al., 2020). One
of the key methods to quantify the variation in species
composition is to partition β-diversity into its turnover
and nestedness components (Baselga, 2010, 2013). The
turnover component of β-diversity reflects the phenome-
non of species replacement by other species from site to
site as a result of environmental sorting or temporal and
spatial constraint (Qian et al., 2005). Nestedness, in con-
trast, occurs when species-poor assemblages are subsets
of more species-rich assemblages as a result of non-
random processes such as colonization and extinction
along the gradient. Therefore, partitioning the two com-
ponents is necessary to elucidate the underlying mecha-
nisms that shape variation in the composition of
communities along gradients (Baselga, 2010).

Variation in community composition along spatial
gradients may arise because of niche differences among
species in the regional species pool (Legendre et al., 2005;
Whittaker, 1956). Such a niche-based view would posit
that landscapes are mosaics with distinct environmental
characteristics, and the environment assembles commu-
nities by filtering species based on their niches or traits.
Thus, sites that share similar environmental conditions
should harbor fairly similar communities. An alternative
view suggests that the variation in community composi-
tion is created from the dispersal limitation and demo-
graphic fluctuations due to events such as colonization,
speciation, or extinction (Bell, 2001; Hubbell, 2001;
Legendre et al., 2005; Qian et al., 2005; Tuomisto
et al., 2003). There is a general consensus that both envi-
ronmental sorting and dispersal limitation work in con-
cert to assemble ecological communities (da Silva
et al., 2018; Leibold et al., 2004); however, the relative
importance of each may vary across scales, taxa, and
regions (Laliberté et al., 2009; Soininen et al., 2018).

Traditionally, metrics based on taxonomic composi-
tion have been used to assess patterns of β-diversity,
while functional similarities between the communities
were largely ignored (but see Fukami et al., 2005; Kraft
et al., 2008; Swenson et al., 2011). Since the expression of
traits (both within and among species) changes as envi-
ronmental conditions change (Cornwell & Ackerly, 2009;

Read et al., 2014), information on traits can help uncover
mechanisms driving community assembly that may be
missed by using only taxonomic β-diversity indices
(McGill et al., 2006; Siefert et al., 2013). For example,
when environmental conditions between two or more
sites differ, one set of species may be replaced by another
set because of environmental filtering of species based on
their traits (Siefert et al., 2013; Swenson et al., 2011). In
contrast, when environmental conditions are similar
between two sites, ecological communities may still show
high species turnover but share similar functional trait
composition (Dehling et al., 2020; Qian & Ricklefs, 2000).
In such cases, dispersal limitation and geographic dis-
tance result in dissimilarity of the two communities.
Therefore, it is imperative to understand trade-offs
between species composition and functional trait compo-
sition in order to develop a more robust framework of
β-diversity patterns along spatial gradients.

Mountain regions are home to much of the world’s ter-
restrial biodiversity (Spehn et al., 2010). Due to a typically
systematic variation in climate with elevation, the distribu-
tion of biodiversity in mountains also varies, sometimes sys-
tematically and other times not (McCain & Grytnes, 2010;
Rahbek et al., 2019). It is well known that β-diversity
between two sites increases with the increase in distance
between sites (distance-decay) (Bishop et al., 2015; Wang
et al., 2012). However, along the elevational gradients,
β-diversity may exhibit midelevational peaks (Acharya &
Vijayan, 2015; Levanoni et al., 2011; Naud et al., 2019),
increase with elevation (Castro et al., 2019), or display a
decreasing trend (Fontana et al., 2020). Variation in niche
breadth and mobility of different taxa and local abiotic fac-
tors may be responsible for contrasting patterns in β-diversity
along the elevational gradient (Fontana et al., 2020). Despite
such variation in β-diversity patterns, it is generally accepted
that turnover due to environmental filtering is a major cause
of variation in community composition along elevational gra-
dients because of abrupt environmental changes (Fontana
et al., 2020; Jiang et al., 2019; Kaltsas et al., 2018; Machac
et al., 2011). However, a few studies have also found nested
structure in community composition along elevational gradi-
ents (Patterson et al., 1996; Presley et al., 2012). Currently,
there is no general consensus on whether the patterns and
processes of β-diversity are consistent among mountain
regions, or taxa, around the globe.

Due to the steep elevational gradient, the Himalayan
region is a natural laboratory to test biogeographical
hypotheses. In recent years, there has been an upsurge in
biogeographical studies of multiple taxa, including but-
terflies, in various parts of the Himalaya (Acharya,
Chettri, & Vijayan, 2011; Acharya, Sanders, et al., 2011;
Acharya & Vijayan, 2015, 2017; Bhardwaj et al., 2012;
Dewan et al., 2021; Rana et al., 2019). In the Himalayan
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region, species richness of butterflies declines with
increasing elevation (Acharya & Vijayan, 2015; Bhardwaj
et al., 2012) including in our own study in the Rangeet
Valley, eastern Himalaya (see Dewan et al., 2021). In that
study, we found a significant influence of actual evapo-
transpiration and a suite of habitat variables in shaping
the α-diversity patterns (Dewan et al., 2021). To date,
however, we know little about patterns in β-diversity and
trait variation in butterflies, despite their ability to
uncover mechanisms of community assembly (but see
Tonkin et al., 2017; Hu et al., 2018).

In this study, we assess community composition
(β-diversity patterns) of butterflies along the elevational
gradient in Rangeet Valley, Sikkim, eastern Himalaya. We
analyzed β-diversity at two levels: (1) stepwise β-diversity
of adjacent elevational zones along the elevational gradient
and (2) pairwise β-diversity along the gradient (starting
from the lowest elevational zone with all other elevational
zones, and the next zone with all other zones and so on).
Since butterflies depend exclusively on plants for their
entire life cycle and closely track plant species richness and
density (Acharya & Vijayan, 2015; Sharma et al., 2020), we
hypothesized that β-diversity would peak at midelevations
coinciding with the zone of maximum transition in vegeta-
tion parameters. For pairwise β-diversity, we predict that
β-diversity will increase with increasing elevational dis-
tance. We partitioned β-diversity into its additive compo-
nents for both incidence-based (turnover and nestedness)
and abundance-based (balance variation and abundance
gradient) indices. We predicted that the β-diversity would
be mainly driven by the turnover component because
elevational turnover patterns are commonly observed in
terrestrial invertebrates (Bishop et al., 2015). We also deter-
mined the processes that influence the pattern of
β-diversity in butterflies along the elevational gradient. We
asked whether niche-based processes (e.g., environmental
filtering) or more neutral process (i.e., dispersal limitation)
are the major determinants of the elevational β-diversity
pattern of butterflies. We then analyzed the importance of
individual variables in shaping the community composi-
tion of butterflies along the elevational gradient.

Lastly, we analyze the effect of environmental factors
along the elevational gradient on trait composition of
butterfly assemblages. The traits are important aspects of
butterfly ecology and thus influence the community
assemblage mechanism in the mountains. We use traits
such as dietary specialization, elevational range size,
wingspan, and biogeographic affinity that encompass
important aspects of butterfly ecology such as feeding
strategies, dispersal capabilities, and environmental toler-
ances (Barbaro & van Halder, 2009; Kaltsas et al., 2018;
Leingärtner et al., 2014). We hypothesize that these but-
terfly traits also show variation along the elevation in the

Himalaya. We predict that similar environmental condi-
tion would favor assemblages of butterflies with similar
traits. We then linked species composition and traits of
butterflies with the environmental factors along the ele-
vation. To our knowledge, this is the first attempt to
understand trait-based assemblages of butterflies along
an elevational gradient in the Himalaya.

MATERIALS AND METHODS

Study area

We conducted this study in Sikkim, which is one of the
mountain states in northeast India, and part of the
Himalaya biodiversity hotspot. The Himalaya forms
the highest and longest mountain chain system in the
world and can be divided geographically into western,
central, and eastern Himalaya. The study sites were
located in the Rangeet valley, which spans the south and
west districts of Sikkim in the eastern Himalaya
(Figure 1, Appendix S1: Figure S1). The elevation of the
valley ranges from 300 m in the lowland tropical areas to
8586 m (summit of Mt. Khangchendzonga, third highest
mountain in the world). The lower valleys experience hot
and humid climate, while the highland areas are cold
with very little moisture almost throughout the year. The
continuous gradation of elevation and associated climate
influences the assemblage and distribution pattern of
flora and fauna in this mountain landscape. The vegeta-
tion types prevailing in this region transition at approxi-
mately every 900 m elevation (Appendix S1: Figure S2;
Acharya & Sharma, 2013; Haribal, 1992). For our
study, we selected a total elevational range of 3000 m
(300–3300 m) because sampling in the high-elevation
area (>3300 m) was logistically not viable, and besides,
only a few species of butterflies are expected above
this elevation (see Acharya & Vijayan, 2015) due to the
extreme climatic conditions.

Butterfly sampling

We used fixed points marked along permanent transects
to sample butterflies following Acharya and Vijayan
(2015). While the Pollard walk method is considered the
best technique to sample butterflies, this method requires
one to walk at a steady pace along the transects while
sampling butterflies in an imaginary 5-m3 box plot
(Pollard, 1977). It is difficult to walk steadily in a rugged,
sloping, and slippery terrain; hence, fixed points set along
nonlinear transects are more feasible in mountainous
landscapes. This method has been recognized as one of
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the best techniques to sample butterflies in the moun-
tains (Kral et al., 2018) and has been frequently used in
previous studies (Acharya & Vijayan, 2015; Sharma
et al., 2020). We divided the total elevational range
(3000 m) into 16 vertical elevational zones of 150–200 m
width. In each zone, suitable forest sites were selected
based on their accessibility and the feasibility of sampling
butterflies (Figure 1). We selected natural forest trails,
which were free from human disturbances. A transect of
approximately 1000 m length was established in each of
the 16 elevational zones, and 10 permanent points were
marked along each transect. In order to avoid recounting
of the same individual butterflies during sampling, a dis-
tance of at least 100 m was maintained between the points.
For 5 minutes, we recorded butterflies within a radius of
5 m from the center of each permanent point. Sampling
was conducted only on clear sunny days from 10:00 AM to
1:00 PM when butterflies are most active. We used
Haribal (1992) and Kehimkar (2016) to identify butterflies
on the wing. Those butterflies, which could not be identi-
fied in the field, were photographed and later identified
by referring to guidebooks and ifoundbutterflies.org

(Kunte et al., 2019). Since butterflies are highly seasonal,
we covered the three main seasons in a 2-year period
(2016–2018); premonsoon (March–May), monsoon
(June–August), and postmonsoon (September–November).
Butterfly sampling in each transect was replicated three to
four times in all the seasons.

Traits and species groupings

We selected four butterfly traits—range size, wingspan,
larval host-plant specialization, and biogeographic
affinity—which are known to be good predictors of spe-
cies response to elevation (Appendix S2: Table S1; Kaltsas
et al., 2018; Leingärtner et al., 2014). Range size is the dif-
ference between the highest and lowest elevations where
the butterflies were recorded. We added 100 m (50 m at
both lower and upper bounds) to the range of the butter-
flies and assume the species to be present throughout this
range (Stevens, 1992). Adding the ranges ensures that
species recorded at only one elevational site would have
at least the range of 100 m, which otherwise would have
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the observed range of 0 m. The range augmentation will
not affect the species composition along the elevation as
the added range does not extend to other adjacent
elevational zones (the elevational distance between two
consecutive zones is 150–200 m). Data on wingspan of
the butterflies were obtained from Kehimkar (2016). We
assigned biogeographic affinity to the butterfly species
following Holloway (1974) into (1) global, (2) oriental,
(3) Palearctic, and (4) afro-tropical species. Information
on host plants of the butterflies was collected from the lit-
erature (Haribal, 1992) supplemented by field observa-
tions. We categorized butterflies as (1) monophagous,
(2) oligophagous, and (3) polyphagous species (Dewan
et al., 2021; Zhang et al., 2019). Information on host-plant
specialization and biogeographic affinity was missing for
a few species. In such cases, data from the genus level
were extrapolated to species level following Gunton
et al. (2011) and Leingärtner et al. (2014). The method
assumes that the traits are phylogenetically conserved to
some degrees at least in the taxonomic (genus) level con-
sidered (Kissling et al., 2014).

Predictor variables

We assessed several environmental variables that poten-
tially influence the species composition of butterflies. As a
habitat variable, we estimated richness and density of trees
and shrubs along the same transects established for sam-
pling butterflies. To sample trees, we placed 10 � 10 m
quadrats in the same spots where permanent points for
butterflies were earlier laid. For quantification of shrubs,
two smaller quadrats of 5 � 5 m were placed diagonally
within each of the 10 � 10 m quadrats. Hence, 10 large
and 20 small quadrats were enumerated along each of the
transects in all the elevational zones. We considered plants
with girth at breast height ≥20 cm as trees. We pooled the
richness and density of trees and shrubs from all the quad-
rats to transect level for each elevational zone.

We used Normalized Difference in Vegetation Index
(NDVI) as a surrogate for aboveground primary produc-
tivity (Nieto et al., 2015). We first obtained 3 years (2016–
2018) of Landsat 8 imagery of the Sikkim Himalayan
region (available at 30 m resolution; downloaded from
http://earthexplorer.usgs.gov) for NDVI estimation. We
then calculated NDVI in each elevation zone from Near-
infrared and Red bands of the Landsat 8 dataset using
the formula: NDVI = (Near-infrared � Red)/(Near-
infrared + Red) using ArcGIS 10.4. Calculating the NDVI
by averaging entire elevation zone may be biased as
human habitation areas are also present in those zones.
Therefore, we extracted the averaged NDVI of a center
pixel and eight adjacent pixels from the raster containing

the NDVI values. The center pixel in the raster falls exactly
in the midpoint of a transect (1 km long) established for
sampling butterflies. Taking the averaged NDVI from nine
pixels ensures that values from all the points along the
transects are represented.

We used mean annual precipitation (MAP) and mean
annual temperature (MAT) from the CHELSA (Climatologist
at high resolution for the earth’s land surface areas) dataset
available at a resolution of 30 arc seconds (1-km2 grid)
(Karger, Conrad, Böhner, Kawohl, Kreft, Soria-Auza, &
Kessler, 2017; Karger, Conrad, Böhner, Kawohl, Kreft, Soria-
Auza, Zimmermann, et al., 2017). We obtained the averaged
values of temperature and precipitation for consecutive ele-
vation zones using ArcGIS 10.4. We estimated annual actual
evapotranspiration (AET) as a measure of water energy and
annual potential evapotranspiration (PET) as a measure of
ambient energy (Hawkins & Porter, 2003a) based on MAT
and MAP datasets following Kluge et al. (2006) and Acharya,
Sanders, et al. (2011).

Data analysis

Assessment of the completeness of sampling
effort

We first aggregated our point count data to transect level
for each of the elevational zones, and subsequent analyses
were done at the transect level (which also represents one
elevation zone). We then assessed the completeness of
sampling effort invested in the field during the study. In
addition to observed species, we quantified estimated and
rarefied richness for each elevational zone using the Esti-
mateS software (Colwell & Elsensohn, 2014). Chao 1 and
Jackknife 1 were used to estimate richness due to their
high precision (Hortal et al., 2006). Sample-based rarefied
richness was considered as the number of species rarefied
to the lowest number of counts conducted for any site
(110 point counts in this case). Species accumulation cur-
ves were generated using these estimators to assess the
completeness of the sampling effort.

Determining the elevational β-diversity pattern

To estimate β-diversity, we used both incidence-based and
abundance-based dissimilarity measures (Baselga, 2010).
The total pairwise incidence-based β-diversity was calcu-
lated as the Sorenson dissimilarly index (βsor). We then
partitioned it into turnover (βsim) and nestedness (βnes)
components. The incidence-based dissimilarity measure
does not take abundances into account, and hence, rare
species will generally be treated similarly to common
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species. Further, bias correction and variation estimation
are impossible with only incidence-based data (see Chao
et al., 2006). Therefore, to compensate for biases that
may occur in incidence-based estimates of β-diversity, we
also calculated abundance-based β-diversity. The total
abundance-based β-diversity was calculated as a Bray-
Curtis dissimilarity index (dBC) and then partitioned into
balanced variation (dBC-bal) and abundance gradient com-
ponents (dBC-gra) (Baselga, 2013). The balanced variation
(dBC-bal) is equivalent to the turnover component, in which
individuals of one species are substituted by the same
number of individuals but of other species from site to site.
The abundance gradient, on the other hand, complements
the nestedness component and is caused by individuals
being lost from one site to another without the species
being replaced. Following Wang et al. (2012) and Fontana
et al. (2020), we analyzed β-diversity (and its components)
at two levels: (1) stepwise β-diversity that compares one
elevational zone with its adjacent elevational zone
along the elevation gradient (e.g., 350:500, 500:650, and
650:800 m) and (2) pairwise elevation β-diversity that com-
pares each elevation (starting from the lowest elevation
and sequentially all elevation sites) to all other elevations
(e.g., 350:500, 350:650, 350:800, 500:650, and 500:800 m).
The first method allows us to detect major transitions in
the butterfly community along the elevational gradient.
Since stepwise β-diversity aids in understanding the pat-
tern along the elevational gradient, we examined how
these patterns of β-diversity relate to elevation using both
linear and quadratic regression models. The pairwise com-
parison approach provides insights into distance decay of
dissimilarity in butterfly communities with increasing
elevational distance. We plotted pairwise dissimilarity
values between each elevational zone against elevational
distance between the same pair of zones. Prior to this anal-
ysis, an elevational distance matrix was created using
Euclidean distance. We tested for correlation in overall
dissimilarity and its components with the elevational dis-
tance using Pearson’s correlation test and tested for its sig-
nificance using a Mantel test. This analysis was conducted
using vegan (Oksanen et al., 2016) and betapart (Baselga &
Orme, 2012) packages in R software (R Development Core
Team, 2018). We also conducted hierarchical cluster analy-
sis and generated a dendrogram plot using βsor and dBC
dissimilarity values of each elevational zone with the func-
tion “hclust” with the default of complete linkage algo-
rithm in R. In order to test the goodness of fit of the
hierarchical clusters, we calculated the cophenetic correla-
tion coefficient (CPCC) that represents correlation
between the actual distance and the predicted distances
based on a particular hierarchical configuration. The clus-
ters are considered to be fit when CPCC value lies close to
1 and usually above 0.75.

Determining the effect of spatial and
environmental variables

In order to understand how space and environment affect
the compositional dissimilarities of butterflies along the
elevational gradient, we used generalized dissimilarity
modeling (GDM). The GDM is a linear matrix-based regres-
sion that models compositional dissimilarity between pairs
of sites as a function of environmental and geographic dis-
tance (see Ferrier et al., 2007 for details). GDM compensates
for the nonlinearity in ecological datasets, which mainly
arises due to (1) a curvilinear relationship between composi-
tional dissimilarity and increasing environmental distance,
and (2) rates of compositional turnover along the environ-
mental gradients that are often nonstationary. To account
for nonstationarity in the data, the GDM transforms the pre-
dictor variables using maximum likelihood and flexible I-
splines to provide the best supported relationship between
biotic dissimilarities and environmental/geographic distance.
Such scaled and combined distance is then transformed
using a log link function to account for curvilinearity
between the biotic dissimilarity and environmental/
geographic dissimilarities. To fit GDMs, we used dissimilarity
matrices and site-by-environment matrices, where sites rep-
resent each elevational zone. Prior to GDM analysis, we
tested for multicollinearity between the predictor variables.
Among the set of variables considered, we found high collin-
earity between MAT, MAP, PET, and AET. We selected
AET as the sole environmental predictor for further analysis
as it is likely to be the most ecologically relevant variable
along with other biotic variables such as tree species rich-
ness, tree density, shrub species richness, shrub density, and
NDVI. Along with the environmental predictors, we also
used geographic coordinates for calculating geographic dis-
tance of the sites in each elevational zone. All transects in
our study were 1000 m long, and we used the geographic
coordinates of the midpoint of each transect. We tested for
importance and plotted the I-splines for each predictor vari-
able. Finally, we partitioned the deviance in the GDM fol-
lowing Borcard et al. (1992) to test the relative importance of
environmental and geographic variables. We ran GDM using
the gdm package (Manion et al., 2017) in R.

Assessing trait composition and its relationship
to environmental variables

To investigate how environmental variation along the
elevational gradient affects butterfly traits, we used a
combination of RLQ (Dolédec et al., 1996) and fourth-
corner analysis (Legendre et al., 1997). Both methods are
based on co-inertia analysis between sets of three matri-
ces: R (site � environment table matrix is a site � species
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table), L (matrix is a site � species table), and Q (trait
data of the species matrix are a species � trait table).
Prior to the analysis, we log transformed the environmen-
tal variables to compensate for the skewed dataset caused
by various traits having different measurements. For
species-level data, we used a Hellinger transformation. In
this multivariate analysis, at first, separate ordinations
were run on R, L, and Q matrices. Then, the Q matrix
was related to the R matrix using L as the link. The
analysis of the three matrices creates a fourth matrix
(environment � traits), which was used to summarize the
joint structure of the three matrices (Dray et al., 2014). For
ordination of the R matrix (log transformed), we applied
principal component analysis (PCA). Since our Q matrix
consisted of mixed data, we performed ordination using
Hill/Smith PCA. Correspondence analyses were performed
on the L matrix. The fourth-corner method is combined to
test the hypothesis produced by the RLQ ordinations. The
fourth-corner analysis allows a test of significance of the
correlation observed in RLQ ordination axes and species
traits or environmental variables (Dray et al., 2014). The
significance of this correlation was tested using 999 permu-
tations and referring to p values adjusted through the
false correction method (Benjamini & Hochberg, 1995).
The RLQ fourth-corner analyses were conducted using the
package ade4 (Dray & Dufour, 2007) in R.

RESULTS

Patterns of β-diversity

We recorded a total of 3603 individual butterflies belong-
ing to 253 species from six families during the study. Spe-
cies accumulation curves for estimated (Chao 1 and
Jackknife 1), rarified, and observed richness begin to
plateau, reflecting that sampling was almost complete at
the majority of the sites. Since estimated (both Chao
1 and Jackknife 1), rarefied, and observed species rich-
ness showed high correlation (r = 0.99 and p < 0.01), we
used only observed species richness for further analyses
and modeling. The species richness pattern of butterflies
(observed as well as estimated) followed a declining trend
with elevation (see Dewan et al., 2021 for details).

The mean pairwise dissimilarity for βsor (incidence-
based) and dBC (abundance-based) was 0.735 and 0.794,
respectively (Table 1). Partitioning β-diversity (incidence-
based) returned a higher contribution of βsim (turnover) com-
pared with βnes (nestedness) in the overall β-diversity. Mean
βsim and βnes are 0.600 and 0.135, respectively. Similarly, in
the case of abundance-based dissimilarity, dBC-bal (balance
variation) with a mean value 0.693 was more dominant than
the dBC-gra with a mean value of 0.101. Stepwise β-diversity

between two adjacent elevation sites showed two peaks of
species dissimilarity: one between 950 and 1150 m and other
between 2100 and 2300 m (Figure 2, Appendix S2: Table S2).
The quadratic models, with their lower Akaike information
criterion values, performed better than the linear models in
explaining the β-diversity pattern along the elevational

TABL E 1 Mean, SD, minimum (Min), and maximum (Max)

range of the overall incidence-based (βsor) and abundance-based

(dBC) dissimilarities of butterflies and their substitution

components observed in Sikkim, eastern Himalaya

Beta diversity indices
and their components Mean SD Min Max

βsor 0.735 0.203 0.043 1.000

βsim 0.600 0.200 0.000 1.000

βnes 0.135 0.072 0.000 0.361

dBC 0.794 0.192 0.014 1.000

dBC-bal 0.693 0.238 0.000 1.000

dBC-gra 0.101 0.095 0.000 0.435

Note: Components of β-diversity: βsim—turnover, βnes—nestedness, dBC-bal—
balanced variation, and dBC-gra—abundance gradients.

F I GURE 2 Pairwise (a) incidence-based and (b) abundance-

based β-diversity of butterflies between two adjacent sites along the

elevation gradient in Rangeet Valley, Sikkim, eastern Himalaya.

βnes, nestedness; βsim, turnover; βsor, Sorenson dissimilarity index;

dBC, Bray-Curtis dissimilarity index; dBC-bal, balanced variation;

dBC-gra, abundance gradient
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gradient (Appendix S2: Table S3). The models showed a
unimodal pattern of β-diversity along the elevational gradi-
ent. βsor, βsim, dBC, and dBC-bal were significantly higher at
midelevations than at low or high elevations, following the
unimodal pattern. βnes and dBC-gra did not show any signifi-
cant pattern with the elevational gradient.

Mantel tests indicated a significant increase in pairwise
incidence-based β-diversity, βsor (r = 0.8226, p < 0.01), βsim
(r = 0.76, p < 0.01), and βnes (r = 0.21, p < 0.05), with
increasing elevational distance between sites (Figure 3).
Similarly, the abundance-based β-diversity—dBC (r = 0.80,
p < 0.01) and dBC-bal (r = 0.74, p < 0.01)—increased signifi-
cantly with increasing elevational distance, but dBC-gra
(r = �0.23, p = 0.986) was not significantly correlated with
elevational separation. Cluster analysis based on βsor
(CPCC = 0.895) and dBC (CPCC = 0.85) showed a separate
cluster for butterfly assemblages of low and midelevations,
which was distinct from the high-elevation butterfly com-
munities (Appendix S3: Figure S1).

GDM and deviance partitioning

Based on the generalized dissimilarity model, variation in
AET, tree species richness, tree density, and geographic

distance between different elevational zones were all
significant predictors of βsor. Among all the variables, vari-
ation in AET was the most important predictor for
β-diversity measures followed by tree richness, tree den-
sity, and geographic distance (Table 2, Appendix S3:
Figure S2). The full GDM explained 88.03% of the total
deviance observed in the model. In the deviance par-
titioning approach, pure environmental variables alone
explained 87.8% of the deviance, while geographic distance
explained only 0.001% variation. The combined deviance
(explained by environmental variables and geographic dis-
tance) was only 0.21%. A similar pattern was found in the
case of βsim where a model with AET, tree richness, tree
density, and geographic distance had the best fit. The full
model explained about 76.8% of the deviance observed in
βsim. Here, environmental variables alone explained 76.1%
of deviance and geographic distance explained 0.13%,
while 0.23% of the total deviance was shared between
these two factors. With the βnes model, only AET was a
significant predictor. Environmental variables explained
7.39% of the deviance observed in the model, while geo-
graphic distance made no contribution.

Similar to the incidence-based β-diversity, variation in
AET, tree species richness, tree density, and geographic
distance were significant predictors of dBC and dBC-bal

F I GURE 3 Relationship between biotic dissimilarity of butterflies and elevational distance in Rangeet Valley, Sikkim, eastern

Himalaya. Biotic dissimilarity is measured as (a) Sorenson dissimilarity index (βsor), (b) its turnover (βsim), and (c) nestedness (βnes)
components; (d) Bray-Curtis dissimilarity index (dBC), (e) its balanced variation (dBC-bal), and (f) abundance gradient (dBC-gra) components.

Pearson correlation coefficient (r) and significance (p) computed using Mantel tests are also shown
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(Table 2, Appendix S3: Figure S3). Among these predic-
tors, AET was the most important predictor followed by
tree species richness, tree density, and geographic dis-
tance. These variables explained 86.77% and 81.00% of
the deviance observed in dBC and dBC-bal, respectively.
Environmental variables independently explained 86.65%
and geographic distance explained 0.36% of the deviance
observed in dBC, while 0.23% was jointly shared
(Figure 4). Likewise, environmental variables and geo-
graphic distance, respectively, explained 80.81% and
0.11% of the deviance observed in dBC-bal, and 0.08% of
the total deviance was jointly shared by the environmen-
tal and geographic distance. In contrast, GDM with shrub
density and geographic distance was the best fit for dBC-
gra. However, these variables explained only 11.62%,
which was explained by environmental variables alone as
geographic distance did not contribute to the deviance
observed in dBC-gra.

Trait composition of butterfly assemblages

RLQ analysis indicated the overall significant association
between butterfly traits and environmental variables
(Monte Carlo permutation test; n = 49,999; p < 0.05).
The RLQ plots showed the influence of elevation in both
taxonomic and trait assemblages. The first two axes of
the RLQ projected 98.51% of the total variance (Table 3).
The combined RLQ and fourth-corner method showed

significant negative associations between environmental
variables such as AET, tree density, and tree species rich-
ness with the first axis (Table 4, Figure 5). The first axis
represented changes in the environmental gradient from
a warm and humid tropical landscape at lower elevations
to harsh and dry environments at higher elevations. It is
also related to the reduction of tree richness and density
at higher elevations. Among the traits analyzed, butter-
flies with a Palearctic affinity were positively correlated
with the first axis, but no other butterfly traits showed
any significant correlation with any of the other axes.

DISCUSSION

Pattern of β-diversity of butterflies along
the elevational gradient

We examined the patterns of β-diversity and community-
level trait composition of butterflies along an extensive
elevational gradient in the eastern Himalaya. We found
that trends in incidence-based dissimilarity mirrored the
trends observed in abundance-based dissimilarity. There-
fore, each one of the measures could be used in a comple-
mentary way to explain the trends of β-diversity in the
mountains. Pairwise β-diversity of butterflies increased
significantly with increasing elevational separation:
That is, elevational zones farthest from each other had a
maximum dissimilarity in composition of butterflies.

TAB L E 2 A summary of generalized dissimilarity models (GDM) showing the relationship between incidence-based (βsor) and
abundance-based (dBC) dissimilarities of butterflies in Sikkim, eastern Himalaya, and their additive components with environmental

variables and geographic distance

Statistic or variable βsor βsim βnes dBC dBC-bal dBC-gra

Null deviance 26.564 21.452 5.909 27.850 34.136 10.616

GDM deviance 3.179 4.969 5.319 3.419 6.162 9.192

Percentage deviance explained 88.031 76.837 9.982 87.723 81.949 13.412

Intercept 0.000 0.000 0.088 0.000 0.000 0.067

Variable importance

Geographic 0.000 0.770 0.000 0.000 0.000 0.000

TRS 3.550 4.246 5.063 5.518 9.093 0.000

TD 1.837 3.991 0.040 1.006 2.617 0.000

SSR 0.528 0.810 3.687 0.107 0.215 5.789

SD 0.606 0.802 0.000 0.845 0.045 35.837

AET 46.420 43.461 46.430 40.147 35.398 0.832

NDVI 0.743 0.527 12.157 0.201 0.213 5.829

Note: Significant variables (p < 0.05) are marked in bold. Components of β-diversity: βsim—turnover, βnes—nestedness, dBC-bal—balanced variation, and

dBC-gra—abundance gradients.
Abbreviations: AET, actual evapotranspiration; NDVI, Normalized Difference in Vegetation Index; SD, shrub density; SSR, shrub species richness; TD,
tree density; TRS, tree species richness.
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Turnover (incidence-based dissimilarity) or the balanced
variation (abundance-based dissimilarity) contributed
most to the overall β-diversity, indicating that one assem-
blage of species and its populations were being replaced
by different species and populations in other sites
(Baselga, 2010, 2013). High substitution of butterfly spe-
cies along the elevational gradient provides direct evi-
dence that the assemblages in high elevations were not a
subset of lower elevations. For instance, only 0.65% of the
total species was shared between the lowest (350 m) and
the highest elevational zone (3100 m) in our study. High
levels of substitution of species and population compo-
nents indicated that the assemblages of butterflies are rel-
atively exclusive in each of the elevational zones
examined here. Therefore, it can be assumed that high
regional diversity of butterflies in the Himalaya arises

mainly because of rapid turnover among communities.
Studies around the world have consistently found a higher
contribution of the turnover component in explaining
β-diversity patterns for a range of taxa, for example, plants
(Zhao et al., 2019), soil Enchytraeidae (Jiang et al., 2019),
dung beetles (da Silva et al., 2018), and ants (Flores
et al., 2018) along elevational gradient. Similar patterns
have also been reported for butterfly communities in
eastern Alps, Italy (Fontana et al., 2020), and Olympus and
Rhodopes mountain range, Greece (Kaltsas et al., 2018).

While each elevational zone possessed a unique compo-
sition of butterflies due to high turnover among elevations,
cluster analysis revealed that the butterfly communities
could be grouped into three distinct categories: low, mid,
and high elevations. Each clusters of the butterfly commu-
nity was associated with the particular vegetation strictly
found in each elevation, for example, low-elevation com-
munity to tropical semideciduous forests, midelevation
community to subtropical broad-leaved forest, and high-
elevation community to temperate broad-leaved forest.
Notably, the two elevational peaks in β-diversity lie in the
transition zone between these three categories. In our study
area, 900–1150 m is chiefly a zone between tropical semi-
deciduous forest and subtropical broad-leaved forest
(Acharya & Sharma, 2013; Acharya & Vijayan, 2017),
which coincides with the peak of β-diversity. Areas between
2100 and 2300 m elevations form another transition zone
between subtropical forest and dense temperate broad-
leaved forest, and β-diversity also peaked at this elevation.
Acharya and Vijayan (2015) have reported a similar
midelevational peak in turnover of butterflies from the
Teesta Valley of eastern Himalaya, although their peaks
occurred at 1650–1850 and 3650–4000 m. High β-diversity
between the transition zones is possibly due to the edge
effect, which occurs at ecotone boundaries (Despland,
2014). In mountains, the ecotone boundaries separate vege-
tation zones. Shifts in butterfly assemblages at ecotonal
boundaries (or vegetation transition zones) are a commonly
observed phenomenon in mountain regions and have been
previously reported from northern Chile (Despland
et al., 2012) and northern Israel (Kent et al., 2013). Such
phenomena are expected in pristine mountain landscapes
where abiotic factors associated with elevation filter species
into local assemblages, making each elevation zone unique
in terms of community composition (Jiang et al., 2019;
Kaltsas et al., 2018).

Factors affecting the β-diversity pattern of
butterflies along the elevation

Two processes, environmental filtering and spatial con-
straints, typically influence patterns of β-diversity along

F I GURE 4 Proportion of deviance (shared and independent)

of the generalized dissimilarity model explained by the

environmental predictors (ENV) and geographic distance (GEO) in

explaining Sorenson dissimilarity index (βsor), its turnover (βsim),
and nestedness (βnes) components, and Bray-Curtis dissimilarity

index (dBC), its balanced variation (dBC-bal), and abundance

gradient (dBC-gra) components of butterflies along elevation gradient

in Sikkim, eastern Himalaya

TAB L E 3 Summary of the RLQ analysis of butterfly traits

observed in Sikkim, eastern Himalaya

Statistic Axis 1 Axis 2

Eigenvalues 0.375 0.073

Correlation 0.372 0.243

Projected inertia (%) 82.412 16.101

Variance retained R (%) 98.218 96.494

Variance retained L (%) 42.094 34.007

Variance retained Q (%) 73.855 76.378

Note: Details of the eigenvalues, correlation, percentage of the total projected

inertia explained by the first two axes, percentage variance retained by R
(environmental variable matrix), L (species matrix), and Q (species traits
matrix) are provided.
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TAB L E 4 Combination of fourth-corner and RLQ results showing the relationship between butterfly traits and environmental variables

(a) Butterfly traits Axis R1 Axis R2 (b) Environmental variables Axis Q1 Axis Q2

Range size 0.167 �0.116 TRS �0.265 �0.156

Afro-tropical �0.065 �0.828 TD �0.223 �0.061

Global �0.046 0.049 SSR �0.0894 �0.099

Oriental �0.114 �0.131 SD �0.188 0.141

Palearctic 0.272 0.129 AET �0.389 0.059

Monophagous 0.036 �0.118 NDVI 0.115 �0.124

Oligophagous 0.143 0.001

Polyphagous �0.189 0.050

Wingspan �0.123 �0.038

Note: (a) Fourth-corner tests between the first two RLQ axes for environmental variables (AxR1/AxR2) and butterfly traits; (b) fourth-corner tests between the
first two RLQ axes for butterfly traits (AxQ1/AxQ2) and environmental variables. Significant association is marked in bold (adjusted p < 0.05).

Abbreviations: AET, actual evapotranspiration; NDVI, Normalized Difference in Vegetation Index; SD, shrub density; SSR, shrub species richness; TD, tree
density; TRS, tree species richness.

F I GURE 5 Results of RLQ analysis of butterflies showing scores of (a) sites, (b) environmental variables, and (c) traits. (a) Elevation in

meters; (b) AET, actual evapotranspiration; NDVI, Normalized Difference in Vegetation Index; SD, shrub density; SSR, shrub species

richness; TD, tree density; TRS, tree species richness. (c) Bio_A.AT, afro-tropic species; Bio_A.GL, global species; Bio_A.OR, oriental species;

Bio_A.PA, palearctic species; Polyp.MO, monophagous species; Polyp.OL, Oligophagous species; Polyp.PL, polyphagous species
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environmental gradients (Legendre et al., 2005; Leibold
et al., 2004). Partitioning of the deviance in GDM rev-
ealed that a large fraction of deviance in butterfly
β-diversity was explained by the environment compared
to geographic distance between sites. Based on these find-
ings, we argue that the pattern of β-diversity is largely
due to environmental filtering rather than geographic
extent. Our finding thus supports the “niche-based model”
or “species sorting model,” which relies on the importance
of environmental site characteristics in controlling the
species composition (Hu et al., 2018; Jiang et al., 2019;
Whittaker, 1956) rather than “neutral processes”
(Bell, 2001; Hubbell, 2001). Inconspicuousness of the
effect of geographical distance on β-diversity is probably
due to the smaller spatial scale in our study. It is widely
accepted that β-diversity depends on the spatial scale
(grain size and extent) (Laliberté et al., 2009; Soininen
et al., 2018). The aerial distance of entire stretch of Ran-
geet Valley is approximately 65 km (from the lowest
point of the valley to the tip of Mt. Khangchendzonga).
Hence, it is less likely that geographic extent (such as in
our study) in the region can isolate the dispersal of but-
terflies. Studies have already proved that environmental
filtering is more influential at smaller or regional scale,
while spatial constrain (dispersal limitation) may have
more profound effect in the larger scale (L�opez-Delgado
et al., 2019; Qian & Ricklefs, 2000).

Among the set of environmental variables, variation
in AET, tree species richness, and tree density had the
largest effect on β-diversity of butterflies. AET directly
influences the physiology of an organism (through
the effect of temperature/light stress and water avail-
ability) and regulates the productivity of an ecosystem
(Hawkins & Porter, 2003a). Being ectothermic organisms,
butterflies depend largely on regulating temperature as
energy for maintaining their physiology, and water avail-
ability in all forms (nectars, mud puddles, and fruit
juices) is crucial because butterflies are dominantly liquid
feeders (Fleishman et al., 2005). It is widely believed
that at local levels, the diversity of animals is strongly
influenced by the diversity of plants (Acharya &
Vijayan, 2017; Haddad et al., 2001; Siemann et al., 1998).
Similarly, butterflies are dependent on availability of
larval host plants for acclimation to new habitats
(Despland, 2014). However, at the regional or broader
geographical scale, several studies have demonstrated an
association between herbivores and climatic factors
rather than plants (Hawkins & Porter, 2003b). Hawkins
and Porter (2003b) showed a positive correlation between
plants and butterfly distributions at moderate scales, but
once the water-energy balance (AET) and topographic
variables were added into a regression model, the effect
of plants became nonsignificant. Their finding suggests

that butterflies and plants respond synchronously to the
climatic variation. The ambient climatic conditions (such
as AET) facilitate growth of more vegetation by influenc-
ing the resources availability for plant growth. AET has
been reported to significantly influence the pattern of
tree diversity along the elevation in the eastern Himalaya
(Acharya, Chettri, & Vijayan, 2011; Rana et al., 2019).
Climatic conditions shape the structure and composition
of the vegetation types, which, in turn, determine the
butterflies that are ultimately adapted to such habitats.
Differences in habitat diversity and structure such as
plant species richness, understory coverage, canopy open-
ness, and basal area are plausible factors that can influ-
ence β-diversity of butterflies in a range of ecosystem
types (Sharma et al., 2020). In the eastern Himalaya, AET
is known to decrease linearly with elevation leading to a
climate–habitat gradient (Trabucco & Zomer, 2010). The
synchronous response of vegetation and butterfly com-
munity to climate is also reflected through cluster analy-
sis in our datasets as composition of butterfly in different
clusters directly corresponds to composition of vegetation
found therein. The lower elevations have warmer hetero-
geneous habitats with high productivity and support a
diverse group of butterfly communities. The butterfly
communities found in the harsh and less productive
highlands are characterized by a few specialist species.
Here, the harsh environmental conditions act as a deter-
ministic filter on community assembly of butterflies
leading to the selection of only a few species that have
evolved specialized traits allowing them to thrive/survive
in those niches. Future studies on interaction between
vegetation structure and community/trait composition
of butterflies along the elevational gradients would pro-
vide more insights on β-diversity of butterflies in the
mountains.

Trait composition of butterflies along the
elevation

Niche or trait differences among assemblages are perhaps
largely due to the historical affinities of particular species
toward specific biogeographic realms. In the Himalayan
region, species occurring at low to midelevations are
mostly represented by the oriental elements (Indo-
Malayan or Indo-Chinese) adapted to the tropical
hot/humid climate, whereas the high-elevation butterfly
assemblages are mostly Palearctic species that show
wider climatic tolerance and are also adapted to the col-
der temperate region (Haribal, 1992; Holloway, 1974;
Mani, 1974). This phenomenon explains the unique clus-
ters of butterfly community observed in the lower and
higher elevation in this study. The biogeographic affinity
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of butterflies indicates high phylogenetic relatedness; for
example, the butterflies of genus Pieris or Argynnis,
which showed high environmental tolerance, had the
affinity toward Palearctic realm. The “tropical niche con-
servatism hypothesis” explains that the affinity of butter-
flies toward tropical environments is an ancient,
conserved trait and that evolution of cold tolerance in the
new derived taxa (Palearctic species in this case) allows
them to colonize colder climatic regimes (DeVries, 2000;
Hawkins & DeVries, 2009). “Vertical colonization,”
wherein highlands would be colonized by the elements
arising from the lowland lineages as a result of cold envi-
ronmental adaptation, has also been suggested as a plau-
sible explanation for dung beetle assemblages in the
mountains of southern Brazil (da Silva et al., 2018;
Lobo & Halffter, 2000). Evidence suggests that some of
the oriental clades have expanded their ranges upward
toward the highlands: For example, the majority of the
butterfly species in the genus Lethe are found at low- or
mid elevation sites, but a few species such as Lethe
nicetlla or Lethe maitrya inhabit higher elevation areas
(2700–3800 m) (Kehimkar, 2016). However, vertical colo-
nization does not apply to a large proportion of the but-
terfly communities in the Himalaya. Rather, the
colonization history of the majority of butterflies is more
complex than generally anticipated. Oriental forms origi-
nating in the Tertiary mountains east and southeast of
India followed their upward and westward movement
and began colonizing the lowlands of the newly rising
Himalaya between the Pliocene and early Pleistocene
(Mani, 1974). The Palearctic fauna that diversified in col-
der Turkmenistan and Mediterranean subregions
appeared in the west of Himalaya in the Pleistocene
when the mountains had already formed (at least above
timberline). Species were raised to higher elevations with
continued orogenic uplift and then radiated out in an
eastward direction through high-elevation passes as seen
in the butterfly genus Paranassius on the Qinghai–
Tibetan Plateau (Su et al., 2020). The colonization history
of butterflies suggests that the dispersal mechanism is
important in shaping the current assemblages of butter-
flies in the Himalayan landscape.

Other butterfly traits such as dietary specialization
and wingspan, and elevational range size did not affect
the assemblage pattern of butterflies in this study. The
“altitudinal niche-breadth hypothesis” explains that the
diet breadth of herbivore increases with increasing eleva-
tion; that is, more number of species would be polypha-
gous in the higher elevation, while the lower elevation
would be dominated by specialist species (Rasmann
et al., 2014). The inconsistency of our results with this
hypothesis may be because (1) of scanty information on
larval host plants of Himalayan butterflies and (2) the

alpine area (>4000 m), which represents a habitat with
extreme environment where butterflies with different life
history strategies possibly occur, was not considered in
this study. Nevertheless, evidence for the hypothesis is
also mixed, with some authors showing evidence for the
hypothesis (Pellissier et al., 2012), while others show
contrasting results (Novotny et al., 2005; Rodríguez-
Castañeda et al., 2010). Similarly, we did not find any
significant pattern of variation in wingspan of butterfly
community along the elevational gradient. Our finding is
similar to results obtained for Costa Rican butterflies
(Hawkins & DeVries, 1996) and Geometridae moths in
the Andean montane rain forest (Brehm & Fiedler, 2004).
The elevational patterns in wing size is generally group-
specific and therefore shows weak relationship when
whole taxa (for instance in this study) are taken into con-
sideration. The elevational range size of butterflies also
did not show significant variation among different assem-
blages along the elevational gradient in this study. The
mean elevational range of butterflies does increase with
increasing elevation in the eastern Himalaya, indicating
that species in the higher elevation generally have higher
elevational range than its lowland counterpart (Dewan
et al., 2021a, 2021b). However, the elevational range size
relationship is weak (R2 = 0.538, p < 0.01) and therefore
may not be as important as the biogeographic affinity in
shaping the assemblages on butterflies along the eleva-
tion in the eastern Himalaya.

CONCLUSIONS

We recorded high β-diversity of butterflies in our study
along an extensive elevational gradient in the Himalaya,
reflecting the importance of the entire gradient for butter-
fly conservation. Stepwise β-diversity had a unimodal
pattern along the elevational gradient coinciding with
vegetation transition zones. The β-diversity pattern
largely reflected turnover (incidence-based) or balanced
variation (abundance-based) components, indicating
that assemblages of butterflies were exclusive in each
elevational zone along the gradient. We found that
the resultant pattern of β-diversity was largely due to
environmental filtering rather than geographic extent
reflecting the importance of environmental site charac-
teristics in determining the current species composition
of butterflies. Similarly, our trait-based analysis suggests
that niche division among species was largely due to the
biogeographical affinities of butterflies. We opine that
current assemblages of butterflies in the Himalaya may
also have been influenced by dispersal mechanisms
linked to their colonization history. However, more
empirical studies covering many elevation gradients
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across the Himalaya along with phylogeographic assess-
ments would provide a better understanding of the colo-
nization history and current assembly of butterflies in the
Himalaya.
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