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Abstract

Context Managers are faced with numerous methods

for delineating wildlife movement corridors, and often

must make decisions with limited data. Delineated

corridors should be robust to different data and

models.

Objectives We present a multi-method approach for

delineating and validating wildlife corridors using

multiple data sources, which can be used conserve

landscape connectivity. We used this approach to

delineate and validate migration corridors for

wildebeest (Connochaetes taurinus) in the Tarangire

Ecosystem of northern Tanzania.

Methods We used two types of locational data

(distance sampling detections and GPS collar loca-

tions), and three modeling methods (negative binomial

regression, logistic regression, and Maxent), to gen-

erate resource selection functions (RSFs) and define

resistance surfaces. We compared two corridor detec-

tion algorithms (cost-distance and circuit theory), to

delineate corridors. We validated corridors by com-

paring random and wildebeest locations that fell

within corridors, and cross-validated by data type.

Results Both data types produced similar RSFs.

Wildebeest consistently selected migration habitat in

flatter terrain farther from human settlements. Vali-

dation indicated three of the combinations of data

type, modeling, and corridor detection algorithms

(detection data with Maxent modeling, GPS collar

data with logistic regression modeling, and GPS collar

data with Maxent modeling, all using cost-distance)

far outperformed the other seven. We merged the

predictive corridors from these three data-method

combinations to reveal habitat with highest probability

of use.

Conclusions The use of multiple methods ensures

that planning is able to prioritize conservation of

migration corridors based on all available information.

Keywords Connectivity � Connochaetes taurinus �
Circuit theory � Cost distance � Land-use planning �
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Least Cost Path Analysis � Maxent � Migration �
Resource selection functions � Wildebeest

Introduction

A variety of animal taxa undertake seasonal long-

distance migrations, defined as round-trip movements

between discrete areas not used at other times of the

year (Berger 2004), as a means to avoid predation and

severe weather, and to maximize resource intake

(Fryxell et al. 1988; Holdo et al. 2009; Poor et al.

2012). Long-distance migrations provide large-scale

ecological benefits and services such as nutrient

transfer, soil fertilization, and seed dispersal (Hamil-

ton et al. 1998; Holdo et al. 2009; Estes 2014).

However, migrations are in precipitous decline glob-

ally because of rapid environmental change in many of

the landscapes in which they still occur (Bolger et al.

2008; Harris et al. 2009; Singh and Milner-Gulland

2011). The linear shape of many corridors (Sawyer

et al. 2009) make migrations particularly sensitive to

the effects of habitat loss and fragmentation, partic-

ularly in areas that act as natural bottlenecks such as

valleys or passes (Morrison and Bolger 2014). Recent

efforts to quantitatively delineate and validate corri-

dors to conserve migratory species and their associ-

ated ecological services have significantly improved

the resolution and accuracy of corridor planning, but

relatively little effort has been made to compare

amongst the many types of data and analyses that form

the basis of corridor prediction (Berger 2004; Sawyer

et al. 2009; Epps et al. 2011; Poor et al. 2012; McClure

et al. 2016).

Typical methods to identify animal migration

corridors use (1) spatially explicit animal location

data, (2) a landscape ‘resistance surface’ as the inverse

of a suitable habitat model, to provide a quantitative

estimate of how environmental parameters impede or

facilitate animal movement (reviewed by Zeller et al.

2012), and (3) a cost-based algorithm that defines the

migratory pathways between seasonal core areas

through the resistance surface (e.g., cost distance;

Adriaensen et al. 2003 or circuit theory; McRae et al.

2008). The use of resistance surfaces to represent the

landscape between migratory endpoints and algo-

rithms to delineate movement pathways has increased

over the last decade (Sawyer et al. 2009; Poor et al.

2012; Cushman et al. 2013; LaPoint et al. 2013;

McClure et al. 2016). Beier et al. (2008) described

many of the steps, choices, and assumptions involved

in corridor (or linkage) delineation and design, and

Zeller et al. (2012) provided guidance for defining the

resistance surface(s). Both Beier et al. (2008) and

Zeller et al. (2012) noted additional research gaps

regarding methodological comparisons that we

attempted to address in this study.

Land managers often must make conservation and

management decisions in settings with limited data,

particularly when events they are attempting to

observe and protect, such as long-distance migrations,

are unpredictable in timing and location (Sawyer et al.

2009; Singh et al. 2012). One data type, active

individual tracking, directly observes animal move-

ments but is expensive to collect and therefore often

limited in sample size (Hebblewhite and Haydon

2010). Another data type, point observations, is less

expensive and less invasive than collars and measures

animal distributions well, but not their movements.

Given the various data types and model structures in

common use, there is a need to assess the sensitivity of

the predicted corridor to data source and resistance

surface model type, in order to ensure that the

delineated corridor is robust and neither data- nor

model-dependent. Here, we present an analytical

framework for corridor delineation projects, using a

multi-method approach with multiple data types,

resistance surface models, corridor algorithms, and

validation techniques.

The Tarangire Ecosystem (TE) in northern Tanza-

nia supports one of the most diverse large-mammal

communities in the world, involving long-distance

migrations of eastern white-bearded wildebeest (Con-

nochaetes taurinus albojubatus), plains zebra (Equus

quagga), common eland (Tragelaphus oryx), fringe-

eared oryx (Oryx beisa), Thomson’s gazelle (Eudor-

cas thomsonii), and Grant’s gazelle (Nanger granti)

(Lamprey 1964; Morrison and Bolger 2012, 2014).

The migration in the TE is one of only three long-

distance migrations of wildebeest remaining in Africa

(Estes 2014). Historically, ungulate populations in the

TE migrated along at least 10 routes between the dry-

season range near the Tarangire River and wet-season

calving ranges on shortgrass plains (Lamprey 1964).

Due to loss, degradation, and fragmentation of habitat
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from the expansion of farms, settlements, and mining,

only two viable migration routes remain (Morrison

and Bolger 2012, 2014; Morrison et al. 2016). These

routes were highlighted by Bolger et al. (2008) and

Caro et al. (2009) as requiring extremely urgent action

to protect known animal movements. Morrison and

Bolger (2014) outlined an approximate wildebeest

migratory route through this landscape (Fig. 1), but a

more explicit delineation of wildebeest migratory

corridors is required to inform land-use planning for

wildlife conservation.

In this study, we compared (1) data types, (2)

analytical processes to define the resistance surface,

and (3) algorithms for delineating migration corridors,

Fig. 1 Corridor study area (enclosed by dashed black line) for

migratory eastern white-bearded wildebeest (Connochaetes

taurinus albojubatus) in the Tarangire Ecosystem, Tanzania

between Manyara Ranch and the calving grounds on the Gelai

Plains. Lines are distance-sampling survey tracks, labelled towns

are areas with high-density settlements and agricultural cultiva-

tion, and black square in inset map shows study area location in

Africa
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and used multiple methods to validate the predictive

corridors. We utilized two types of animal locational

data: detections from distance-sampling surveys, and

GPS collar relocations. We used three methods of data

analyses to generate resource selection functions

(RSFs) and to define resistance surfaces: negative

binomial regression (Nielson and Sawyer 2013),

logistic regression (Manly et al. 2002), and maximum

entropy (Maxent: Phillips et al. 2006). RSFs allowed

us to test a set of habitat preferences and to compare

the consistency of these preferences across the three

modeling approaches. We tested the predictions that

wildebeest selected flat, open grasslands with higher

vegetative greenness that were close to water sources,

and avoided permanent human settlements along the

migration route. We compared two cost-based corri-

dor detection algorithms: cost distance and circuit

theory, in delineating predictive corridors. Finally, we

validated our predictive corridors with locational data

and cross-validated with the other data type based on

methods suggested by McClure et al. (2016), by

calculating whether corridors contained more or fewer

data points than expected relative to random. This

multi-method framework provides a rigorous, formal-

ized process for delineating and validating migration

corridors using multiple data sources, which can be

utilized in land-use plans to effectively conserve

landscape connectivity for wildlife.

Methods

Study area

The TE is in the eastern branch of the Great Rift Valley

and encompasses roughly 30,000 km2 (Borner 1985;

Prins 1987). The approximate boundaries of the TE are

Lake Natron to the north, Simanjiro plains to the

Table 1 Model selection results for resource selection functions of migratory habitat for eastern white-bearded wildebeest (Con-

nochaetes taurinus albojubatus) in the Tarangire Ecosystem, Tanzania

Model K DAICc W

Negative binomial detections

slope pct 1 settlement dist 1 NDVI anom 1 elev 1 veg 6 0.00 0.36

settlement dist 1 NDVI anom 1 slope pct 1 veg 1 elev 1 settlement dist2 7 1.47 0.17

slope pct 1 settlement dist 1 NDVI anom 1 elev 1 veg 1 water dist 7 1.73 0.15

slope pct 1 settlement dist 1 NDVI anom 1 boma dist 1 elev 1 veg 6 1.78 0.15

slope pct ? settlement dist ? NDVI anom ? veg 5 3.16 0.07

boma dist ? settlement dist ? water dist ? NDVI anom ? slope pct ? veg ? elev ? water dist2 9 3.33 0.07

boma dist ? settlement dist ? NDVI anom ? slope pct ? boma dist2 ? settlement dist2 6 5.71 0.02

Logistic regression detections

boma dist 1 settlement dist 1 NDVI anom 1 slope pct 5 0.00 0.28

boma dist 1 settlement dist 1 NDVI anom 1 slope pct 1 water dist 6 0.91 0.18

boma dist 1 settlement dist 1 water dist 1 NDVI anom 1 slope pct 1 settlement dist2 7 1.37 0.14

boma dist 1 settlement dist 1 NDVI anom 1 slope pct 1 boma dist2 1 settlement dist2 7 1.63 0.12

boma dist ? settlement dist ? water dist ? NDVI anom ? slope pct ? settlement dist2 7 2.29 0.09

boma dist ? settlement dist ? water dist ? NDVI anom ? slope pct ? boma dist2 ? settlement dist2 8 2.59 0.08

boma dist ? settlement dist ? water dist ? NDVI anom ? slope pct ? water dist2 7 2.83 0.07

Logistic regression GPS collars

slope pct 1 settlement dist 1 settlement dist2 1 NDVI anom 1 boma dist 1 boma dist2 1 water
dist 1 water dist2 1 veg 1 elev

11 0.00 0.98

slope pct ? settlement dist ? settlement dist2 ? NDVI anom ? boma dist ? water dist ? water dist2 ? veg 9 8.00 0.02

The top-weighted 95% model set is shown. Bolded are models with\2 DAICc

Pct percent, dist distance, anom anomaly, elev elevation, veg vegetation type

Vegetation types were Afromontane forest; deciduous wooded grasslands, two classes of edaphic grassland, and lakes/seasonal

wetlands
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southeast, and Irangi Hills to the southwest, with the

Rift Valley escarpment forming the western boundary

(Lamprey 1964; Morrison and Bolger 2012). Rain

occurs almost exclusively from November–May.

Rainfall in Tarangire National Park is variable

(range = 312–1322 mm), with a mean total annual

rainfall of 656 mm for years 1980–2004 (Foley and

Faust 2010).

Agriculture in the TE increased fivefold from 1984

to 2000 causing substantial habitat loss, increasing

fragmentation, and reducing connectivity (Msoffe

et al. 2011). The TE contains a patchwork of reserves,

including two national parks, Lake Manyara and

Tarangire, as well as Manyara Ranch Conservancy

(Fig. 1) that support high wildlife densities during the

dry season, but all migratory routes and wet-season

calving grounds lie outside formally protected areas

(Morrison and Bolger 2014), and movement corridors

in the ecosystem are considered to be at high risk of

disappearing within the near future (Caro et al. 2009;

Morrison and Bolger 2014; Morrison et al. 2016).

We delineated wildebeest migration corridors

between Manyara Ranch and the Gelai Plains

(Fig. 1). Our corridor analysis area covered approx-

imately 1400 km2 in village lands where both perma-

nent and temporary settlements and domestic

livestock are numerous. The Rift Valley escarpment

(a steep cliff that prohibits wildebeest movements)

formed the western boundary of the study area, and the

town of Mto Wa Mbu, a region of high human

population density and intensive agriculture, bounded

the southwestern part of the study area. A high-traffic

asphalt road between Manyara Ranch and Mto Wa

Mbu defined the southern extent, and a line between

the extinct volcanos of Losimingori, Kitumbeine, and

Gelai formed the eastern boundary of the study area.

Table 2 Model-averaged coefficient parameter estimates and

P values for estimating migratory habitat for eastern white-

bearded wildebeest (Connochaetes taurinus albojubatus) in the

Tarangire Ecosystem, Tanzania

Variable Coefficient SE P

Negative binomial regression with detection data

Intercept -4.673 1.811 0.042

Boma dist 0.081 0.112 0.210

Water dist 0.045 0.046 0.161

Water dist2 -0.006 0.003 0.064

Settlement dist 0.360 0.096 0.021

Settlement dist2 0.001 0.001 0.192

Slope pct 20.737 0.084 0.004

NDVI anom 0.209 0.049 0.017

Elev 0.455 0.189 0.047

Afromontane forest -12.718 2E?07 0.318

Edaphic grassland 1 -1.051 0.763 0.110

Lake/seasonal wetland 22.294 0.341 0.007

Edaphic grassland 2 -2.026 1.001 0.063

Logistic regression with detection data

Intercept -3.535 0.838 0.017

Boma dist 1.384 0.637 0.056

Boma dist2 -0.174 0.200 0.181

Water dist -0.015 0.032 0.261

Water dist2 0.000 0.002 0.296

Settlement dist 0.257 0.084 0.031

Settlement dist2 -0.003 0.003 0.135

Slope pct 20.319 0.121 0.040

NDVI anom 0.108 0.025 0.016

Elev 0.001 0.01 0.316

Logistic regression with GPS data

Intercept -12.522 0.744 0.001

Boma dist 0.569 0.158 0.023

Boma dist2 0.024 0.047 0.250

Water dist 0.357 0.067 0.011

Water dist2 20.033 0.005 0.008

Settlement dist 1.761 0.093 0.001

Settlement dist2 20.061 0.003 0.001

Slope pct 20.162 0.020 0.005

NDVI anom 0.011 0.007 0.096

Elev 20.142 0.041 0.025

Afromontane forest -1.792 1.030 0.079

Edaphic grassland 1 0.618 0.183 0.026

Lake/seasonal wetland -0.018 0.124 0.311

Table 2 continued

Variable Coefficient SE P

Edaphic grassland 2 0.798 0.134 0.009

Significant parameters are bolded

Pct percent, dist distance, anom anomaly, elev elevation, veg

vegetation type

Vegetation types were Afromontane forest; deciduous wooded

grasslands, two classes of edaphic grassland, and lakes/

seasonal wetlands
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Wildebeest detection data

We collected wildebeest count data along 140 km of

fixed-route, vehicle-based survey transects on the one

double-lane gravel road and all single-lane gravel

roads and dirt tracks (Fig. 1). We conducted daytime

surveys for wildebeest between 0700 and 1800 h

approximately every two months from October 2014

to September 2015. Two surveys were conducted

during each of the three precipitation seasons:

November–February (short rains), March–June (long

rains), and July–October (long dry season).

Each sampling event consisted of driving all fixed-

route transects at a speed of 15–20 kph, stopping only

to count animals. The same two observers (DEL and

MLB) counted all wildebeest visible out to 500 m

along both sides of the track. For each singleton or

animal group observed, we recorded vehicle location

using GPS, number of individuals, perpendicular

sighting distance measured with a laser rangefinder

(Bushnell Scout 1000), and cardinal direction. If the

sighting was a cluster of animals, we recorded the

perpendicular distance from the transect to the center

of the animal cluster. We plotted the animal locations

on a GIS map using the distance from track and

cardinal direction, and used those points as used

habitat locations. We compared covariate data at the

used habitat locations with 268 systematically placed

pseudoabsence locations along the fixed-route tran-

sects to estimate binomial (count) and logistic (pres-

ence-absence) RSFs.

GPS collar relocation data

We obtained relocation data from two GPS-collared

wildebeest (an adult male and adult female). TAM

deployed the GPS collars (Telonics TGW-4780H) on

10 and 11 October 2011 in Manyara Ranch as

described by Morrison and Bolger (2014). The male’s

collar collected data at intervals of 4 h for 75 days,

while the female’s collar recorded locations at 12-h

intervals (noon and midnight) for 14 days.

Relocation data consist of two or more successive

locations of the same animal, but not at frequent

enough intervals to treat each sequence as a movement

pathway. With relocation data, the focus is on the area

between locations rather than the specific pathways

between locations or the locations themselves (Zeller

et al. 2012). We used Brownian bridge movement

models (BBMM) based on GPS locations during

migration to estimate wildebeest movement habitat

(Sawyer et al. 2009). The BBMM is a continuous-time

stochastic model, where the probability of use is

conditioned on the distance and elapsed time between

successive locations, the location error, and an

estimate of the animal’s mobility (Horne et al. 2007;

Sawyer et al. 2009). We defined used movement

habitat as the 90% contour of the utilization distribu-

tion of the BBMM, and defined available habitat as the

study area. We generated 718 points systematically

every 500 m within the 90% utilization distribution

and compared covariate data at these points with 4380

background pseudoabsence points systematically

placed every 500 m throughout the entire study area

to estimate RSFs from logistic regression. We esti-

mated utilization distributions using the package

BBMM (source code from Sawyer et al. 2009) for R

(R Core Development Team 2013). We used Maxent

to model probability and correlates of wildebeest

presences relative to the background pseudoabsence

samples throughout the study area.

Habitat suitability and resistance surface modeling

RSFs formed the basis for habitat suitability models

and resistance surfaces. RSFs estimate the probability

that animals select or avoid a particular habitat, given

the availability of different habitats on the animal’s

landscape (Manly et al. 2002; Zeller et al. 2012). RSFs

compare wildebeest locations (used points) with

pseudoabsence data generated along the survey tracks

and throughout the study area, depending on the

analysis (see Supplementary Material 1). We used

three analytical methods (generalized linear models

with negative binomial [link = log] or binomial

[link = logit] error distributions, and Maxent) to

estimate RSFs from our two animal data types

(detections and GPS collars). For detection data, we

used all three methods: negative binomial regression,

logistic regression, and Maxent. For GPS collar data,

we used logistic regression and Maxent. Together, we

compared among five unique data type–RSF combi-

nations. Details of RSF model structures are provided

in Supplementary Material 1.
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Environmental and anthropogenic covariates

and model selection

We developed a suite of a priori hypotheses about

resource selection by wildebeest based on the pub-

lished literature. Wildebeest favor shortgrass plains

with green standing crop (McNaughton 1985) and

must drink daily (Berry and Louw 1982). We hypoth-

esized wildebeest would select open grasslands with

greener vegetation, lower elevations, avoid steeper

slopes, and select areas closer to permanent water

sources (Hopcraft et al. 2014).

To calculate the environmental variables, we

obtained a digital elevation model (DEM) of our

study area from the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) Global

Digital Elevation Model, Version 2, from the U.S.

Geological Survey (USGS) Earth Explorer website

(http://earthexplorer.usgs.gov/). This DEM had a res-

olution of approximately 30 m from which we calcu-

lated the elevation and percent slope for each cell in

our study area using ArcMap 10.4 (ESRI 2016).

We were unable to find a land cover map for

vegetation type that was satisfactory for our modeling

purposes, so we created one using the standard terrain-

corrected ‘Level 1T’ Landsat 8 OLI imagery taken on

February 6th, 2015 and downloaded from the USGS

Earth Explorer website at http://landsatlook.usgs.gov/

viewer.html. We chose this date because it had the

least cloud cover during the time of our study.

Landsat imagery is made up of individual images of

spectral bands representing reflectance from different

wavelengths of light that can be used to create a land

cover map. We performed an unsupervised classifica-

tion on bands 2–7 in ArcGIS using the Isocluster tool.

The Isocluster tool groups clusters of similar pixels

from the bands into a given number of classes. In our

study we ran 20 iterations having a 20-cell minimum

class size and a 10-cell sample window. The cell size

of the imagery was 30 9 30 m and resulted in five

discreet land cover classes.

Because the Isocluster tool creates its classes in an

automated fashion we compared them with existing

vegetation maps and our knowledge of the area to

interpret our modeling results. We defined the land

cover classifications as follows: Afromontane rain

forest and Afromontane undifferentiated forest found

in the higher elevations of the Kitumbeine Mountains

and the Ngorongoro Conservation Area; deciduous

wooded grasslands that occur on the mid-elevation

slopes belowAfromontane forests but above the valley

bottoms; two classes of edaphic grasslands mixed with

low densities of trees and shrubs; and lakes/seasonal

wetlands that included Lake Magadi.

We used Normalized Difference Vegetation Index

(NDVI) values as a metric of vegetation greenness.

We downloaded NDVI maps from the USGS Famine

Early Warning Systems Network data portal (http://

earlywarning.usgs.gov/fews). This portal provides

access to the Earth Resources Observation and Sci-

ence (EROS) Center’s satellite-derived vegetation

products generated from the Moderate Resolution

Imaging Spectroradiometer where NDVI maps are

composited in 10-day intervals. We selected six NDVI

maps representing the approximate time periods dur-

ing which we collected our field observations for

wildebeest detections. Using bilinear interpolation in

ArcMap, we downscaled the maps from their original

*260 m to 30 m to match the resolution of our other

grids.

In order to analyze wildebeest resource selection

according to the relative greenness of vegetation at the

time of the survey, the spatial NDVI data for

wildebeest locations were matched to the time period

in which the location data were collected. We scaled

NDVI values by subtracting the NDVI for each

wildebeest location from the mean NDVI for all

pseudoabsence locations for that month. Thus, the

anomaly indicated relative greenness of vegetation

available during each survey period.

We included distance to permanent water sources

and two anthropogenic covariates representing dis-

tance to human structures in our models. Permanent

settlements were clusters of concrete structures,

whereas Masai homesteads (bomas) comprised one

or more temporary structures made of natural mate-

rials such as wood, mud, and grass, and were encircled

by fencing of cut thorny branches. We mapped all

settlements and bomas using Google Earth (Mountain

View, CA, USA) aerial imagery from June 2014. We

created grids representing the Euclidian distance to

bomas, permanent settlements, and water sources

using the same 30-m spacing as our elevation and

slope grids. We defined permanent settlements as

polygons and calculated the distances from their

edges, whereas bomas were smaller features approx-

imately 100 m across that were defined as a point in

the center of the boma. We hypothesized that
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wildebeest would avoid permanent settlements (Sta-

bach et al. 2016), but be unaffected by bomas because

pastoralist people from the Masai tribe have built such

structures in this region over the past several hundred

years and do not normally hunt wild ungulates (Reid

2012). We also included quadratic terms for each of

the distance covariates to test for non-linear

relationships.

Our global model of all candidate explanatory

variables included: vegetation type (veg); NDVI

anomaly (NDVI anom); elevation (elev); percent slope

(slope pct); distance towater in km (water dist); distance

to water squared (water dist2); distance to settlement in

km (settlement dist); distance to settlement squared

(settlement dist2); distance to boma in km (boma dist);

and distance to boma squared (boma dist2). Covariates

were converted to a grid of 30-m2 cells with each cell

containing a value for the covariate at that location. All

covariates were continuous with the exception of the

categorical vegetation type (veg): we set deciduous

wooded grasslands (themost common class in the study

area), as the reference vegetation category. Small

agricultural plots occurred only within permanent

settlements, so that vegetation in the study area

consisted of natural, uncultivated lands.

We did not analyze data by season because

wildebeest counts were too sparse during the short

rains and dry seasons, when most of the animals were

on the northern calving grounds or southern dry-

season range. However, some wildebeest were

detected during these seasons, and we included these

data in the modeled migration corridors, as our goal

was to map important sites used by wildebeest in the

analysis area.

We fitted and ranked regression models from our

candidate set using information-theoretic model selec-

tion and Akaike’s Information Criterion corrected for

small sample sizes (AICc; Burnham and Anderson

2002). For details on model selection and inference,

see Supplementary Material 2. For logistic and

negative binomial regressions using wildebeest detec-

tions and GPS collar data, we reported the significant

parameters and model weights, and presented final,

weighted, averaged RSFs. We also reported odds

ratios as calculated by ([exp(b) - 1] 9 100%) for

each of the parameters in the RSFs (see Supplemen-

tary Material 3).

For Maxent, model selection is integral with the

algorithm’s entropy maximizing machine learning

process so only one final model is produced from the

environmental covariates andanimalpresence/pseudoab-

sence data (Elith et al. 2011). Performance of themodel is

quantified using area under the receiver operating

characteristic curve (AUC)whereAUC = 0.5 represents

a model that predicts habitat use no better than random,

and where values closer to 1 represent better model

prediction (Elith et al. 2011; Poor et al. 2012).

Landscape resistance

We used our RSFs to estimate the habitat suitability of

each pixel on the GIS map based on landscape

variables. We then created landscape resistance maps

by calculating the inverse of the habitat suitability and

scaling so that each cell in the grid was assigned a

value from 1 to 1000, indicating the ‘cost’ (e.g., energy

expenditure, mortality risk, or habitat avoidance) for

the animals to move across it (Pullinger and Johnson

2010; McClure et al. 2016).

Migration corridor algorithms

We used two cost-based algorithms, least-cost path

analysis (cost-distance) and circuit theory to define

predicted corridors. Cost-distance minimizes the

tradeoff between travel distance among habitat

patches and exposure to unsuitable habitat, and

provides the shortest cumulative cost-weighed dis-

tance between two endpoints (McClure et al. 2016).

Circuit theory (McRae et al. 2008) treats cells in a

landscape as a network of nodes connected to neigh-

boring cells by resistors. Connectivity increases with

multiple pathways in circuit networks, making this

methodology useful for identifying multiple move-

ment corridors (McRae et al. 2008). Cost-distance

assumes individuals have complete knowledge of the

entire landscape that they are traversing, whereas

circuit theory is based on random-walk theory and

assumes individuals only perceive the landscape

within a 1-cell radius of their current location (McRae

et al. 2008). The fact that resistance to current flow is

the same in both directions suggests circuit theory may

be less suitable for identifying a repeatedly used,

directional migration corridor (McRae et al. 2008).

However, migratory routes used by ungulates can vary

by season and year (Bolger et al. 2008) and individuals

may use a particular route multiple times within a

single season or multiple routes might be used by
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different parts of the population (Sawyer et al. 2009).

Thus, we presumed that both cost-distance and circuit

theory would be useful and appropriate for delineating

major and ancillary migration corridors for wildebeest

in our study area.

Both cost-distance and circuit theory use resistance

maps to predict the relative value of cells in the

landscape for movement between two endpoints

(McClure et al. 2016). We selected Manyara Ranch

as the start point in the south and the shortgrass plains

calving grounds on the Gelai Plains in the north as the

end point (Fig. 1). We used the Linkage Mapper GIS

tool (McRae and Kavanagh 2011) in ArcMap to run

the cost-distance algorithm and CircuitScape (avail-

able on CircuitScape.org; McRae and Shah 2008) to

run the circuit-theory algorithm. The Linkage Mapper

tool identifies adjacent (neighboring) core areas and

creates maps of least-cost corridors between them, and

then mosaics the individual corridors to create a single

composite corridor map. The resulting map reflects the

relative value of each grid cell in providing connec-

tivity between core areas, allowing users to identify

which routes encounter more or fewer features that

facilitate or impede movement between core areas.

CircuitScape creates a resistance-based connectivity

metric where each cell of the resistance map is

converted into a node and, using circuit theory, the

‘cost’ of travelling to adjacent nodes is calculated. The

path of adjoining cells that have the lowest resistance

will thus have the highest conductance and denote the

possible paths the animals would travel (McRae et al.

2008).

The results are predictive corridor maps from every

data type–RSF–corridor algorithm combination where

every cell is assigned a predictive corridor value and

then ranked in order from highest to lowest.

Corridor model validation

We used slightly modified methods as outlined by

McClure et al. (2016) to validate our corridor results.

First, we delineated the 80th, 85th, 90th, and 95th

percentile corridors for each predictive corridor map.

A percentile corridor designates a corridor as the

portion of the landscape that is predicted to experience

the highest rates of movement. We scaled the

CircuitScape cells from 0–100 with the higher-value

cells receiving a higher ranking. We scaled the

Linkage Mapper cells from 0–100 and then calculated

the inverse of this value, such that cells ranked at 20%

were converted to 80%. We defined the 80th, 85th,

90th, and 95th percentile corridors as the most

traversable 20, 15, 10, and 5% of the landscape,

respectively. We also delineated the 80th, 85th, 90th,

and 95th percentile corridors in two null (distance-

only) predictive corridor maps. Null predictive corri-

dor maps assume that animals are most likely to

simply travel in a straight line without regard to

environmental features. We generated the null models

by running cost-distance and circuit-theory algorithms

on uniform resistance maps in which all cells have

equal resistance (=1).

To quantify how much of the target movement

process (i.e. migration corridor) was included within

each map, we calculated the percentage of the data

points that was used to create that map which fell

within the 80th, 85th, 90th, and 95th percentile

corridors. We also generated 100 random points

within the study area and calculated the number of

random points within the 80th, 85th, 90th, and 95th

percentile corridors. To determine whether our corri-

dors included a significant number of the data points

used to create them, we compared the percentage of

data points observed within each percentile corridor

with the number of random points using a Chi squared

analysis. This validation method determines whether

the corridors contained more or fewer data points than

expected relative to a random spatial distribution of

points, and assumes most wildebeest detections and

relocations should occur within cells that have high

predicted connectivity values. We also conducted a

cross-validation procedure that used one data type

(detection or GPS collar) to validate the corridors

created using the other data type, therefore utilizing

independent datasets for each validation. To delineate

the portion of the landscape with the highest proba-

bility of use, we created a combined corridor map that

merged the 95% predictive corridors from the best

models that performed significantly better than

random.

Results

Wildebeest detections

We detected 1202 wildebeest at 51 locations from six

distance-sampling surveys. Counts included 11
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locations of 65 wildebeest during the short rains, 35

locations of 1010 animals during the long rains, and 5

locations of 127 wildebeest during the dry season. The

relatively low numbers of wildebeest counted in the

short rains (Jan–Feb) and dry season (Sept–Oct)

compared with the long rains was due to the fact that

most animals in January and February were on the

northern calving grounds outside our analysis area,

and in September and October were at the southern

dry-season range. During the long-rainy season, we

recorded 441 wildebeest in May and 569 in June. May

and June counts each reflected approximately 7–8% of

the estimated total wildebeest population of approx-

imately 7000 in the TE (Morrison et al. 2016).

GPS collar data

We obtained 19 relocations from GPS collar data from

2 wildebeest between Manyara Ranch and the Gelai

Plains. The male wildebeest (9 GPS fixes) travelled

69 km north, and the female (10 GPS fixes) travelled

north 52 km then turned back south and travelled

34 km.

Habitat suitability models

We considered the number of parameters in our final

habitat suitability models to be adequate (i.e. models

were not over-fitted) because parameter estimates

were reasonable and standard errors were estimable.

Negative binomial regression model

For the negative binomial regression using detection

data, four models were competitive (DAICc\ 2) and

six models accounted for 95% of AICc weight

(W) (Table 1). We found a significant positive corre-

lation between number of wildebeest and NDVI

anomaly (vegetation greenness), distance to perma-

nent settlements, and elevation, and a significant

negative correlation between number of wildebeest

and steepness of slope and vegetation type of lakes or

seasonal wetlands. These covariates had significant

coefficient slope estimates (P\ 0.05) and appeared in

all models that carried any W (Table 2). The final

weighted, averaged negative binomial regression RSF

model describing wildebeest migration habitat selec-

tion from the detection data in the TE and odds ratios

for parameters are presented in Supplementary Mate-

rial 3.

Logistic regression models

For the logistic regression model using detections,

four models were competitive and seven models

carried[95% of W (Table 1). Presence of wildebeest

was significantly negatively correlated with steepness

of slope and positively correlated with NDVI anomaly

and distance to permanent settlements (Table 2). The

final weighted, averaged logistic regression RSF

model describing wildebeest migration habitat selec-

tion from detection data and odds ratios for parameters

are provided in Supplementary Material 3.

For the logistic regression model using GPS

collar locations in a BBMM utilization distribution,

two models accounted for all W (Table 1). Model-

averaged parameter estimates indicated wildebeests

migrated within a moderate distance from perma-

nent settlements and water, avoided bomas and

steeper slopes, and preferred lower elevations

(Table 2). This model suggested wildebeest

avoided Afromontane forest and lakes/seasonal

wetlands and used edaphic grasslands more than

the reference category (deciduous wooded grass-

lands). In contrast to RSFs for detection data, RSFs

for GPS collar data suggested no selection for

higher NDVI values (Table 2). The final, weighted,

averaged logistic RSF model for the GPS collar

data and odds ratios for parameters are presented in

Supplementary Material 3.

Maxent models

The AUC for the Maxent RSF model using detection

data was 0.814, and for the BBMM using GPS collar

data was 0.828, indicating both models performed

well in predicting the distribution of wildebeest. The

Maxent RSF model using detection data was similar to

the logistic and binomial regressions described above

in that probability of presence of wildebeest was

positively correlated with distance to permanent

settlements and flatter slopes. The most important

parameters were distance to permanent settlements

and bomas (Table 3). Distance to water as well as

percent slope were also important parameters, but
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NDVI anomaly did not contribute to this model. For

the Maxent RSF model using GPS collar data, the

distance to permanent settlements was the most

important parameter, contributing 66.9% to the model,

while the other parameters all contributed\7%.

Corridor delineation and validation

Predictive corridor maps from every data type–RSF–

corridor algorithm combination are presented in Fig. 2a–

j. Null model predictive corridor maps are presented in

Fig. 2k, l. For both the data validation and the cross-

validation processes, the same three predictive corridor

maps [Maxent_detections_LinkageMapper (Fig. 2e),

logistic_regression_GPS_LinkageMapper (Fig. 2g),

and Maxent_GPS_LinkageMapper (Fig. 2i)] contained

significantly more data points than random in all four

percentile corridors (Fig. 3), and these three were the

only 95%predictive corridors that contained significantly

more data points than randompoints. Figure 4depicts the

corridor with the highest probability of use frommerging

the three 95% predictive corridors that performed

significantly better than random.

Discussion

We present the first quantitative migration corridor

modeling and validation results for long-distance

migratory wildebeest in a system that is facing

substantial habitat alteration and fragmentation. Our

multi-method approach allowed us to utilize two data

sources and address model uncertainty by using

multiple analyses to examine variation in habitat

suitability and resistance surface mapping to identify

anthropogenic and environmental covariates affecting

the probability of wildebeest use in the landscape.

Combining models and datasets can be useful in

settings where data are sparse and animals exhibit

multiple behavioral states, such as migratory versus

residency (Hopcraft et al. 2014). GPS collar data are

useful for identifying routes used at low frequency, but

are often limited by small sample sizes. Count data in

contrast may not allow observation of areas used

during rapid movements, but they may provide a

larger sample size of individuals and spatial distribu-

tion of the population. In combination, the two data

types permitted us to validate and cross-validate our

predictive corridors, confirming their robustness.

Correlates of wildebeest habitat selection

Our five data type–RSF combinations revealed many

consistent patterns, and some inconsistent ones. As

predicted, all RSFs strongly identified wildebeest

migration habitat to include flatter terrain farther from

permanent human settlements, supporting recent

findings from resident wildebeests in Kenya (Stabach

et al. 2016). In contrast to our predictions, RSFs

indicated migratory wildebeest preferred areas distant

from bomas, suggesting avoidance even of very low-

density human habitation. Also contrary to our

predictions, we found some evidence that wildebeest

avoided areas near fresh water sources, but we believe

this was a consequence of permanent settlements and

human uses that are themselves associated with year-

round water sources, most of which have been

appropriated for agriculture and livestock in this

region.

Table 3 Percent contributions and permutation importance for

parameters in Maxent models for migratory eastern white-

bearded wildebeest (Connochaetes taurinus albojubatus) in the

Tarangire Ecosystem, Tanzania

Variable Percent

contribution

Permutation

importance

Maxent with detection data

Boma dist 21.5 26.8

Water dist 20.4 15.4

Settlement dist 28 26.9

Slope pct 18.8 18.1

NDVI anom 0 0

Elev 9.2 11.8

Veg 2.1 1

Maxent with GPS data

Boma dist 1 1.4

Water dist 6.1 5

Settlement dist 66.9 73

Slope pct 4 3.5

NDVI anom 3.4 0.6

Elev 5.5 8

Veg 13 8.5

Pct percent, dist distance, anom anomaly, elev elevation, veg

vegetation type

Vegetation types were Afromontane forest; deciduous wooded

grasslands, two classes of edaphic grassland, and lakes/

seasonal wetlands
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The RSF models based on detection data indicated

wildebeest selected areas with higher vegetation

greenness values and used deciduous wooded grass-

lands more than other vegetation types, while the RSF

models based on GPS collar data found no association

with greenness, and indicated wildebeest used edaphic

grasslands more than deciduous wooded grasslands.

Furthermore, detection data suggested wildebeests

preferred higher elevations while GPS collar data

indicated selection for lower elevations. We believe

these conflicting results may underscore behavioral

differences underlying collar data collected during the

Fig. 2 Maps depicting the 80th, 85th, 90th, and 95th percentile

predictive corridors for wildebeest migration habitat in the

Tarangire Ecosystem, Tanzania derived from combinations of

data types, resource selection functions, and corridor detection

algorithms: detection data, logistic regression, and Link-

ageMapper (a); detection data, logistic regression, and Cir-

cuitScape (b); detection data, negative binomial regression,

LinkageMapper (c); detection data, negative binomial

regression, and CircuitScape (d); detection data, Maxent, and

LinkageMapper (e); detection data, Maxent, and CircuitScape

(f); GPS collar data, logistic regression, and LinkageMapper (g);
GPS collar data, logistic regression, GPS collar data, and

CircuitScape (h); GPS collar data, Maxent, and LinkageMapper

(i); GPS collar data, Maxent, and CircuitScape (j); Null

LinkageMapper (k); and Null CircuitScape (l). Best models

(e, g, i) from validation and cross-validation are underlined
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northward migration, versus detection data collected

throughout the year. Our GPS collar data indicated

that animals moved quickly northwards fromManyara

Ranch towards the breeding grounds once the rains

began, often traveling at night through bottlenecks and

across high-traffic roads (Morrison and Bolger 2014).

Therefore, the collar data likely reflected wildebeest

movements during an active migratory state, when

animals were moving through open areas such as

grasslands without necessarily stopping frequently to

forage. Daytime detection sampling surveys captured

animals throughout the year in various behavioral

states including individuals migrating quickly north-

wards at the onset of the wet season and slowly

southwards as the dry season progressed, as well as

some individuals that may have resided within the

corridor, because we detected wildebeest in the study

area during all three precipitation seasons. Slower-

moving southward migrants and potentially resident

animals from our detection data were likely selecting

foraging habitat represented by higher greenness

(NDVI values), and seeking shade in wooded areas

during the heat of the day.

There is growing recognition that ungulates have

distinct migratory and sedentary phases, and that this

difference is important to understanding the environ-

mental context in which movements occur (Morales

et al. 2004). Some corridors are used mainly for

connectivity, while others have functional uses, such

as habitat for short stop-overs and even longer

foraging bouts (Sawyer and Kauffman 2011). Given

the ecological significance of these different behav-

ioral states, efforts to delineate corridors should

ideally incorporate methods that can differentiate

these behaviors and functions, though this can be

difficult with ground-based observations because the

timing of migration can vary substantially with the

timing of rainfall, and is thus difficult to observe

(Holdo et al. 2009; Singh and Milner-Gulland 2011).

In our study, visual detections did not reveal which

behavioral state (migratory versus sedentary) individ-

uals expressed at the time of observation. However,

Fig. 3 Validation (a) and cross-validation (b) of wildebeest

migration predictive corridors in the Tarangire Ecosystem,

Tanzania, done by comparing percent of data points observed in

each corridor minus the percent of random points in each

corridor. Validation used the same data as were used to create

the corridors, cross-validation used the other data type e.g., GPS

data were used to validate corridors that were defined using

detections data. Outlined columns indicate 95% corridors that

contained significantly more data points than random points (v2

P value\0.05)
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wildebeest were detected in the corridor study area

during all seasons, and our cross-validation procedure

indicated similar corridor delineation results across

both data types, suggesting that the area is likely used

for both connectivity and foraging.

Delineation of migratory corridors

Ungulate migrations are typically believed to occur

along one well-defined route, but Sawyer et al. (2009)

suggested that multiple routes might be used by

different parts of the population. Furthermore, migra-

tory routes used by ungulates can vary by season and

year (Bolger et al. 2008). The predictive corridors

from each data type–RSF combination were similar

regardless of corridor detection algorithm, as evi-

denced by the similarities between pairs of predictive

corridor maps in Fig. 2a, b, e–j which included

roughly the same areas. However, there were notice-

able differences in predictive corridor maps due to

Fig. 4 Map combining top

three predictive corridor

models for migratory

eastern white-bearded

wildebeest (Connochaetes

taurinus albojubatus) in the

Tarangire Ecosystem,

Tanzania between Manyara

Ranch and the calving

grounds on the Gelai Plains
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variation in data types and RSF model structures. The

three best predictive corridors for wildebeest migra-

tion in our study area were derived using cost-distance

(i.e. Linkage Mapper) rather than circuit theory,

similar to predictions for migratory elk (Cervus

elaphus) pathways in Yellowstone National Park

(McClure et al. 2016). Like McClure et al. (2016),

we believe both corridor detection algorithms are

useful. Linkage Mapper depicted a single, wider

corridor for wildebeest, while CircuitScape offered a

diversity of narrower corridors and revealed poten-

tially important locations in need of further investiga-

tion, such as pinch points at a steep cliff that crossed

the center of our study area. By merging the three best-

performing 95% predictive corridor maps from our

validation process, we delineated a combined corridor

that was most strongly supported by our wildebeest

sampling data (Fig. 4). We believe that combining

high-performing corridor models is the best approach

to ensure that land-use plans conserve sufficient

movement pathways for migratory wildebeest.

Conservation implications

Until the 1800s, grassland ecosystems around the

world supported vast herds of migratory ungulates

numbering in the millions of animals (Fryxell et al.

1988) and these moving herds structured entire

ecosystems (Holdo et al. 2009). Human population

growth and agricultural expansion have led to consid-

erable encroachment on and eventual loss of many

historical migratory routes (Bolger et al. 2008; New-

mark 2008; Caro et al. 2009), including the elimina-

tion of most migrations throughout the range of

Connochaetes (Estes 2014). East Africa still supports

a high diversity and abundance of migratory ungu-

lates, but most of the remaining populations are

threatened (Bolger et al. 2008).

Bolger et al. (2008) noted that in obligate migratory

populations, such as wildebeest in the TE, populations

often respond suddenly and severely to the disruption

of migratory routes. At the end of the 19th century the

TE’s wildebeest population likely numbered in the

hundreds of thousands and likely connected with

populations in the Amboseli basin and Athi-Kapiti

Plains in southern Kenya (Estes 2014). More recently,

the TE’s wildebeest population decreased from an

estimated 40,000 animals in 1988 to approximately

7000 today (Morrison et al. 2016). The TE’s eastern

white-bearded wildebeest is genetically distinct from

the western white-bearded wildebeest (C. t. mearnsi)

in the Serengeti-Ngorongoro Ecosystem (Georgiadis

1995), thus the extirpation of wildebeest in the TE

would mean the loss of an evolutionarily significant

population, with only small populations remaining in

Kenya (Worden et al. 2010). The sustainability of the

TE’s wildebeest population is important to the

ecological function (Lee et al. 2016) and economic

value of Tarangire and Lake Manyara national parks,

two of the most popular and profitable parks in the

country. Conserving migratory habitat for wildebeest

also will protect important rangelands for Masai

pastoralists and their livestock, as both domestic cattle

and wildebeest utilize similar habitats for grazing in

the TE (Voeten and Prins 1999), and will benefit other

wildlife species correlated with wildebeest presence in

this ecosystem (Kiffner et al. 2015). Given the many

demands on grazing lands in these landscapes, there is

an important need to accurately identify core habitat

used by migratory wildlife. Our analysis provides an

illustration of ways to incorporate multiple data

sources, models, and validation techniques to estimate

a spatially explicit corridor for effective land-use

planning and conservation.
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