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Abstract

For large herbivores, predation-risk, habitat structure and population density are often reported as major determinants of
group size variation within and between species. However, whether the underlying causes of these relationships imply an
ecological adaptation or are the result of a purely mechanistic process in which fusion and fragmentation events only
depend on the rate of group meeting, is still under debate. The aim of this study was to model guanaco family and bachelor
group sizes in contrasting ecological settings in order to test hypotheses regarding the adaptive significance of group-size
variation. We surveyed guanaco group sizes within three wildlife reserves located in eastern Patagonia where guanacos
occupy a mosaic of grasslands and shrublands. Two of these reserves have been free from predators for decades while in
the third, pumas often prey on guanacos. All locations have experienced important changes in guanaco abundance
throughout the study offering the opportunity to test for density effects. We found that bachelor group size increased with
increasing density, as expected by the mechanistic approach, but was independent of habitat structure or predation risk. In
contrast, the smaller and territorial family groups were larger in the predator-exposed than in the predator-free locations,
and were larger in open grasslands than in shrublands. However, the influence of population density on these social units
was very weak. Therefore, family group data supported the adaptive significance of group-size variation but did not support
the mechanistic idea. Yet, the magnitude of the effects was small and between-population variation in family group size
after controlling for habitat and predation was negligible, suggesting that plasticity of these social units is considerably low.
Our results showed that different social units might respond differentially to local ecological conditions, supporting two
contrasting hypotheses in a single species, and highlight the importance of taking into account the proximate interests and
constraints to which group members may be exposed to when deriving predictions about group-size variation.
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Introduction

The ecological determinants of ungulate grouping patterns have

intrigued ecologists for decades. Several factors, such as predation

risk, habitat structure and population density are often linked to

group size variation between and within species [1,2]. However,

whether these relationships result from a biological adaptation or

from a purely mechanistic process with no adaptive significance, is

still subject to debate [3,4]. Regarding the adaptive approach to

group-size variation, anti-predator benefits and competition costs

are among the most cited arguments. Grouped prey can benefit

from increased detection of predators at a safe distance [5,6],

decreased individual probability of death per encounter with a

predator -dilution effect [2], and cooperative defense [7]. Anti-

predator benefits increase with group size for many prey species

[2] and have been considered as the main ecological factors

promoting group formation in open-dwelling ungulates [8].

Jarman (1974), in his study of African antelope social organization,

suggested that anti-predator benefits would impose the lower limit

to group size. However, aggregation costs are expected to place

the upper limit on the number of individuals that can live together

[2]. In this case, Jarman (1974) proposed that, as browsers feed on

single plant parts, they remove whole items thus increasing their

dispersion. In contrast, grazers gradually reduce the size of food

items by repeated bites but resulting in the same spread pattern

from the pre-grazing condition. Therefore, grazers moving over

already eaten pasture can maintain the same spacing as upon

virgin pasture, and still present each individual with the same

dispersion of food items, whereas browsers are forced progressively

further apart as food items are removed from their original

dispersion. The author suggested that as consequence, species

feeding on grasses would be able to form larger groups than those

of browsers.

Assuming that selection will favor individuals that optimally

balance the costs and benefits of anti-predator strategies [9], we

might expect group size to increase as the frequency of encounters

with predators intensifies [2]. However, group size should rise until

individual costs derived from grouping offset anti-predator

benefits. Thus, under Jarman’s hypotheses, predation risk would

make group size grow until it reaches the limit placed by food

dispersion, having grazers a greater potential to form large groups

than browsers. Indeed, various ungulate species show greater
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group sizes when foraging in open habitats than when they are

observed in closer habitats, such as shrublands or woodlands

[4,10,11,12]. But, while Jarman’s theory implies that group size is

an adaptive response to ecological conditions, others [3,13]

suggested that groups of large herbivores are non-permanent

units and that group size increase with habitat openness is the

result of a purely mechanistic process. Gerard (2002) stated that

any increase in the distance at which animals perceive one

another, or in population density, might increase the rate of group

fusion and thus group size. Thus, the author proposed that

observed group sizes are an emergent property rather than an

adaptive response encoded in the individual. Empirical evidence

on roe deer (Capreolus capreolus) supported this hypothesis [3,4].

Finally, behavioral factors, such as territoriality, might indirectly

influence group size through their effects on home-range size [14].

Defense costs are expected to increase with territory size and, as

shown by many ungulate species and populations, undefended

home ranges are usually larger than defended ones [14]. As this

restriction is expected to limit the number of individuals that can

efficiently forage together, territorial groups should be smaller than

non-territorial ones.

Even though grouping patterns have been a central issue in

ungulate ecology, there is a lack of comparative studies among

different populations of the same species accounting for predation

[10], habitat structure and population density effects. This is

probably because few species exhibit such a wide geographic range

to encompass the required contrasting settings [15,16]. One

exception is the guanaco (Lama guancioe), one of the two species of

South American wild camelids, which inhabits deserts and semi

deserts from Northern Perú to Tierra del Fuego. Guanaco

breeding system is a resource-defense polygyny in which the main

social units are families (harems) and bachelor groups [17,18].

Their populations can be migratory (i.e. family groups gather into

mixed groups after the reproductive season and move together to a

winter range) or sedentary (i.e. each family group remain in the

territory defended by the harem male all year round) [17,18].

Guanaco natural predator is the puma (Puma concolor) which,

because of its tendency to prey on livestock, by the middle of the

20th century was extirpated from most of its former range across

Patagonia [19]. Although during the last twenty years hunting

pressure on native carnivores was reduced and pumas have

recolonized much of their former range throughout Patagonia

[20], there are still some places where non-human predators of

guanacos have been absent for decades, offering the unusual

opportunity to test predation-risk hypotheses.

Guanaco group size varies within and between populations [21]

but until now there were no comparative studies accounting for

ecological factors responsible for those differences. The aim of this

study was to model guanaco group size in contrasting scenarios of

predation risk, habitat structure and population density, under the

current theoretical framework. Our main predictions were that 1)

group size would be larger at sites where predation risk is high

than at predator-free sites, 2) guanacos would form larger groups

in grasslands than in shrublands, and 3) group size would increase

with population density. In addition, we expected that, because

male capability to effectively defend a territory should constrain

territory size and the number of females in it, 4) family groups to

be smaller than bachelor groups. As costs/benefits perception is

expected to differ between individuals living in family and

bachelor groups, we tested predictions 1–3 separately for each of

these social units.

Study Locations

In order to compare group sizes of guanacos in contrasting

scenarios of habitat structure and predation risk, we conducted

population surveys in three protected areas of eastern Patagonia,

where poaching does not occur due to the presence of permanent

wardens. All of these areas have experienced important changes in

guanaco density throughout the study period.

San Pablo de Valdés (SP) is a 7,300 has ranch located in the

Southern portion of Penı́nsula Valdés, in Chubut Province,

Argentina (42u369S; 64u159W). The most distinctive climatic

factor across the peninsula is the low average annual rainfall

(280 mm), which falls mostly in the autumn and winter. A detailed

description of vegetation communities can be found in Burgi et. al.

[22] but on a general basis, it is composed by shrublands and

grasslands typical of the Patagonian Province [23]. Formerly

dedicated to sheep production, SP was purchased in 2005 by a

local NGO to be turned into a wildlife reserve; all the c. 3,500

sheep were removed and a permanent warden appointed. Since

then, guanaco population increased systematically [22]. Pumas are

reported only occasionally inside Penı́nsula Valdés (Marcela

Nabte, personal communication) and predation risk at SP during

this study can be considered null.

Cabo Dos Bahias (C2B) is a small wildlife reserve (1,700 ha)

located in southeastern Chubut (44u559S; 65u319W) that holds the

densest guanaco population reported. Average annual precipita-

tion is 250 mm [24]. The vegetation in this area is characteristic of

the Patagonian Province and composed of shrublands and

grasslands. Shrublands are characterized by Chuquiraga avellanedae

and Lycium chilense, and grasslands by Stipa tenuis and Poa ligularis

(Beeskow et al. 1987). There have been no reports of guanaco

predators in the area for more than 20 years (Provincial wardens,

personal communication).

La Esperanza (LE) is a privately owned 6700 ha protected area

located in Chubut Province, (42u79; 64u579W). Average annual

rainfall is 200 mm. The vegetation is characteristic of the

Southern Monte but shares plant species with the Patagonian

Province in the coastal area [25]. The creosote bushes Larrea nitida

and L. Divaricata dominates the western side of the ranch where the

Monte prevails across the higher plains, whereas the quilimbay

(Chuquiraga avellanedae) dominate the cliffs and canyons towards the

coastal steppe. The most abundant grasses are Stipa tenuis and Poa

ligularis [26]. LE is located less than 80 kilometers North-

Westward from SP but in this area puma predation on guanaco

and sheep is common, and guanaco individual behavior is

consistent with high predation-risk level [27].

Guanaco diets at SP and C2B are similar, with Poa sp., Stipa sp.

and Chuquiraga sp. as main items (Marino, unpublished data).

Presumably, guanaco diet at LE is composed by the same

preferred items since edible plants reported at the three reserves

are almost the same. The other two species of medium-sized

herbivores occurring in these locations are choiques (Rhea pennata

pennata) and maras (Dolichotis patagonum), both of them at extremely

low densities. Domestic sheep (Ovis aries) may enter occasionally

into the reserves from neighboring ranches but are rapidly

removed by wardens or ranchers. Hence, we assumed that there

is no interspecific competition affecting guanacos in our study

locations. Telemetry studies conducted at LE [28], and the lack of

seasonal changes in family-groups density across more than eight

years of surveys (Marino, unpublished data) indicate that guanacos

are sedentary within these reserves.

Group-Size Variation in Resource-Defense Ungulates
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Methods

Field Methods
We conducted 25 population surveys. Annual, post-reproduc-

tive (December–March) surveys were conducted in 2006, and

2008–2012 period at SP; in 2006–2012 period at C2B; and 2008–

2011 period at LE. We also conducted pre-reproductive surveys

(September–October) in 2006–2008 and 2010 at SP; 2006–2008

at C2B; and 2007, 2009 and 2012 at LE. Field work was

authorized by the Dirección General de Conservación de Áreas

Protegidas, SubsecretarÍa de Turismo y Áreas Protegidas, and the

Dirección de Fauna y Flora de la Provincia de Chubut (Exp. Nu
004108-MCETI/10; Res. Nu 052/05; Disp. Nu033/2011-DFyFS-

SSRN, Disp. Nu 48/2008), which are the relevant regulatory

bodies concerned with protection of wildlife and animal ethics

issues within public and private protected areas from Chubut

province. Additionally, within both private reserves, surveys were

conducted with the personal supervision and collaboration of the

wardens and administrators in charge, who often include them as

training activities for transient volunteers. This study did not

involve endangered species or any kind of animal handling, and it

was purely observational. These surveys, that were oriented to

estimate population density and social organization variables, were

conducted between 9:00 a.m. and 8 p.m. Data were collected by

two observers standing in the back of an open pick-up vehicle.

Whenever a group of guanacos was detected, we stopped the

vehicle and counted the individuals, trying to identify age and sex

categories with 406 binoculars. Observed groups were classified

into three social categories. Family groups (1) were composed by

an adult male and one or more females, with or without offspring.

Guanacos younger than six months and yearlings can be

recognized easily but adult females and adult males are very

similar. Gender of adult guanacos was determined by direct

observation of external sexual organs and/or lactating young. In

addition to group composition, behavioral patterns, which are well

studied in these locations [27,29,30,31] were considered to assign

groups to this category: harem males tend to be some meters away

from the entire group, often showing some degree aggressive and/

or territorial displays towards group members and neighboring

groups, as chases and defecating. Females in family groups tend to

be highly cohesive, with a high a degree of synchronization in their

activities. In contrast, bachelor groups (2) are composed mostly by

juvenile and adult males. These groups lack from cohesion or clear

hierarchies, and are loosely aggregated, with individuals entering

and leaving continually [30]. Finally, we considered a group as

undetermined (3) when it was too far away for us to assign sex

categories properly and/or behavioral interactions were not clear

enough. Solitary individuals were not considered in this analysis

and they represented on average 3% (61.6) of the observed

individuals in each population. We used the distance between

individuals as accessory data to define a group size only for

bachelor groups because as harem males tend to chase intrudes for

long distances and territorial tolerance vary between populations,

this measure can be misleading for family groups. We considered

an individual as a part of a bachelor group if it was less than

200 meters away from the rest. In order to test our predictions, we

defined group size as the number of individuals older than 12

months. We did not considered young individuals (younger than

one year old) because their number is a direct consequence of the

number of females, they are significantly smaller than adults and

consume less forage to assume the same level of competition of an

adult, they do not contribute to predator detection, and they suffer

greater mortality so the number of young in a group can vary

markedly in the short term [29,32]. Therefore we expected our

predictions to work with older individuals, and each juvenile was

considered with its mother as one individual with high energetic

demands.

We also registered the distance between the group and the

vehicle, group and road trail azimuth, geographic location (GPS)

and finally, a general visual description of the vegetation patch

where the group was located, considering as a patch an area of

200–300 m around the group. Patch description was classified into

vegetation types considering dominant functional groups and

dominant plant species (see Habitat structure and forage availability

subsection).

Habitat structure and forage availability
Habitat structure at patch scale.- Vegetation data gathered

during the surveys were grouped into two categories: (1)

grasslands, dominated by grasses, with less than 10% of shrub

cover; and (2) shurblands, with shrubs covering more than 10% of

soil surface. An intermediate level, with shrubs covering between

10 and 20% of soil surface, was explored but subsequently

removed due to (a) the difficulties of assessing shrub cover level

accurately from the vehicle and (b) the lack of significant

differences in size between groups observed in patches with high

and intermediate shrub cover. Therefore, data with variable shrub

cover higher than 10% were pooled into a single category

‘‘shrublands’’. Converting habitat structure in a two-level

categorical variable has been a useful approach to explain the

observed variation in individual behavior between contrasting

predation-risk settings [29], supporting the use of this variable to

study social responses to predation-risk.

To assess the influence of habitat type at landscape scale, we

incorporated information about vegetation communities into a

Geographic Information System. We used available vegetation

maps assembled from aerial photographs and classified images

[23,33,34]. Vehicle locations (Global Positioning System), azimuth

and distance (Laser rangefinder Bushnell 1000) to the group,

allowed us to calculate the exact location of the group and assign a

vegetation stratum to each group observed.

Enhanced Vegetation Index (EVI) derived from MODIS

satellite images of 250 m of resolution was used as a measure of

relative forage availability [35]. These data are distributed by the

Land Processes Distributed Active Archive Center (LP DAAC)

(lpdaac.usgs.gov). We assigned the corresponding pixel value to

each group observed as an indicator of green biomass at a patch

scale.

Local density estimation
In order to account for group size differences due to local

density variations, we used distance data to estimate local

abundance through Distance Sampling [36], using Distance 5.0

software.

Statistical analysis
To conduct the comparative analysis on group size we fitted

general linear mixed models with a logarithmic link function and a

Poisson error distribution, which is a combination usually

recommended to model count data [37]. We first fitted a global

model to compare family groups with bachelor groups. After-

wards, we fitted separate models to family group and bachelor

group data to test the rest of our predictions. In order to account

for variation inherent to each site, we included Site as a random

factor. To test our predictions, we considered predation (high vs

null predation risk level), habitat structure at patch scale

(grasslands vs shrublands), vegetation stratum at landscape scale

and population density, as fixed effects. Density range differed so

Group-Size Variation in Resource-Defense Ungulates
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much among locations that it was impossible to include raw data

into our models. Therefore, in order to simultaneously account for

density effect on group size within each reserve, density data from

each site was centered by subtracting the site average. In addition,

we included green index EVI at patch scale (pixel value) in our

models to account for potential effects of local primary produc-

tivity on group-size variation. Finally, to account for intra-annual

temporal variation on group size, we classified our surveys into (1)

pre-reproductive (i.e. before November 1st) and (2) post-reproduc-

tive (i.e. after November 1st). Bachelor group sizes were over-

dispersed (the residual deviance was eight times the residual

degrees of freedom) therefore, we fitted a negative binomial model

to this data set [38]. At the moment of this study, software

packages for fitting negative binomial mixed models were under

developing or testing stages. Therefore, in order to confirm that

there were no differences among reserves after controlling for the

other variables, we compared the AIC score of our final model

with the AIC score of the same model including the factor Site as

an additional fixed effect instead of including it as a random term.

Model selection was based on Akaike Information Criteria (AIC)

[39]. We first selected a set of models based on a delta AIC,2

respect from the model having the lowest AIC [40]. Among these

candidates, we considered the most parsimonious model the

simplest alternative (i.e. less parameters) [40]. If the candidates had

the same number of parameters, we chose the one with lowest

AIC. Although we used an information approach to model

selection, we present parameter estimates of those factors included

in the final models, with their corresponding standard errors and p

values, in order to describe effect sizes and precision matters.

Model fitting was performed using Lme4 and nlme packages for R

software (version 2.15.2, The R Foundation for Statistical

Computing, www.r-project.org).

Results

Descriptive statistics
On average, family groups were composed of 6 adult

individuals, ranging from pairs to an adult male with 14 females

(Table 1). Although such a large group was very uncommon, only

5% of the 637 family groups surveyed were larger than ten

individuals. In fact, 64% of the observations comprised six

individuals or less. Average and median family size were consistent

across the three populations sampled (Table 1). Family group size

showed the typical Poisson-like frequency distribution, moderately

skewed to the right (Figure 1, Table 1). Skewness and kurtosis are

useful metrics to explore frequency distribution shape. Skewness

level measures the extent to which a distribution has long, drawn-

out tails on one side or the other, relative to a normal distribution

(which is symmetrical) [38]. Negative values mean skew to the left

(negative skew) and positive values mean skew to the right.

Kurtosis has to do with the peakyness, or flat-toppedness, of a

distribution [38]. A positive kurtosis value indicates a more pointy

(i.e. leptokurtic) distribution than the normal. Group size

distribution showed a sharper peak around the mean at LE (high

predation-risk level) than family groups of the predator-free sites,

as indicated by kurtosis coefficients (Table 1).

Bachelor group sizes were larger and more variable than family

groups. The average bachelor group was composed of 17

individuals, ranging from pairs to 75 guanacos (Table 1) and

showing great dispersion (Figure 1). Regarding frequency distri-

bution shape, only SP and C2B showed some evidence of positive

skweness (Table 1).

Group-size correlates
Family groups - The minimum adequate model for family

group size included the intercept, predation risk, habitat structure

and population density effects (Table 2). Family groups were

significantly larger in the predator exposed population than in the

predator free ones (Difference = 0.084 SE = 0.035 p = 0.016,

Figure 2). Additionally, groups located in grasslands were larger

than those located in patches with more than 10% of shrub cover

(Difference = 0.197 SE = 0.038 p,0.001, Figure 2). It is worth

mentioning that predation-risk:habitat interaction appeared

among some of the best candidates (Table 2) but according to

our selection criterion it had to be removed from the final model,

suggesting that both effects are additive. Finally, there was a very

weak but statistically significant, positive relationship between

group size and population density (Slope = 0.006 SE = 0.003

P = 0.033, Figure 3).

Bachelor groups - The minimum adequate model for bachelor

group size included the intercept, the effect of population density

and season (Table 3). We found a positive relationship between

group size and density (slope = 0.022 SE = 0.01 p = 0.025,

Figure 3). Regarding seasonal variation, bachelor groups were

significantly larger before the start of the mating season (before

November) than during late spring-summer (Diference = 0.52

SE = 0.14 p,0.001, Figure 3). Of the rest of the variables

considered, EVI, habitat structure at patch scale, and predation-

risk showed some influence on group size but the effects were weak

and inconsistent across models. We could not test for the

interaction effect between habitat type at patch scale and

Figure 1. Group-size distribution at a) Cabo Dos Bahı́as (C2B),
(b) San Pablo (SP), and c) at the predator-exposed site La
Esperanza (LE) (data pooled across years). Dark and light bars
represent family and bachelor groups respectively.
doi:10.1371/journal.pone.0089060.g001
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predation-risk level because no bachelor groups were observed in

grasslands at the high predation-risk location. As expected, there

were no between-population differences in bachelor group size

when the other two variables were present in model (AICfinal

model = 805.1 vs AICincluding site = 804.9).

Discussion

Our results showed that family and bachelor group-sizes were

influenced by different ecological factors. Only family groups

supported our hypothesis regarding group size increase in a high

predation-risk setting since harem size was larger in the puma

exposed population than in the predator-free reserves. Conversely,

this effect was absent among bachelor groups. The fact that

guanaco family group sizes supported Jarman’s (1974) predictions

regarding predation-risk whereas bachelor groups did not is

consistent with previous findings on guanaco individual behavior.

Bachelor guanacos usually show low investment in individual

vigilance, regardless of group size or predation risk level [30]. In

contrast, in high predation-risk settings, territorial males in low

density populations and females in general, show important

reductions in vigilance effort as group size increases. However,

these effects are absent in predator free locations [27,29,30]. These

differential patterns suggest that family members perceive anti-

predator benefits of increasing group size whereas bachelors do

not. As our results showed, bachelor groups are considerably

larger than family groups and it is likely that anti-predator benefits

derived from aggregation have already reached an asymptote

below the average size of the former [30].

There are few studies accounting for predation-risk level to

explain group-size variation within ungulate species and their results

not always support the anti-predator hypothesis. Group size of zebra

(Equus burchelli) and wildebeest (Connochaetes taurinus) increased with

increasing predation-risk by lions (Panthera leo) [12] according to the

expected adaptive adjustment of group size. In contrast, spatial

variation in predation-risk by wolves (Canis lupus) had no effect on elk

(Cervus elaphus) herd size [10]. Blackbuck (Antilope cervicapra) group size

was also independent of predation-risk by wolves [41]. As pumas

hunt through stalking, early detection conferred by a larger group

could be especially advantageous for guanacos due to increased

chances of escaping, as observed among Thomson’s gazelles (Gazella

thomsoni) attacked by stalking cheetahs (Acinonyx jubatus) [42]. But

these benefits could easily decrease facing cursorial predators such

as wolves, which can chase their prey for long distances, reducing

early-detection advantages. As Thaker et al. (2010) suggested, the

effectiveness of an anti-predator strategy would be related to the

particular predator hunting pattern. These differences between

predator hunting strategies may explain why group-size responses to

risk level differ within and between prey species exposed to different

predators.

Table 1. Descriptive statistics for family and bachelor group size at the study locations, pooled across the years of study.

Group Type Site PR Density N Mean (SD) Median Range %CV Kurtosis Skewness

Family SP Null 3.95–26.3 185 6.1 (2.7) 6 2–15 44.1 0.68 (0.3) 0.82 (0.2)

Family C2B Null 44.8–70.1 175 5.8 (2.3) 6 2–13 40.4 20.02 (0.4) 0.64 (0.2)

Family LE High 6.7–13.4 277 6.1 (2.4) 6 2–15 39.7 1.15 (0.3) 0.85 (0.1)

Bachelor SP Null 3.95–26.3 28 23.0 (17.2) 20 3–75 74.7 1.18 (0.9) 1.1 (0.4)

Bachelor C2B Null 44.8–70.1 59 15.6 (11.1) 11 2–51 71.4 0.25 (0.6) 0.97 (0.3)

Bachelor LE High 6.7–13.4 21 12.5 (9.2) 10 2–30 73.5 21.13 (1.0) 0.40 (0.5)

Predation-risk level (PR), population density range expressed as guanacos.km22 (Density), sample sizes (N), mean group sizes and standard deviations (SD), range of
observed group sizes (Range), coefficient of variation (%CV), kurtosis (standard error of kurtosis) and skewness (standard error of skewness).
doi:10.1371/journal.pone.0089060.t001

Figure 2. Average group size observed per combinantion of
habitat structure and predation-risk (PR) level (data pooled
across years). Dark and light bars represent family and bachelor
groups respectively. Error bars indicate standard deviations.
doi:10.1371/journal.pone.0089060.g002

Figure 3. Model predictions of group size as a function of
within-population variation in density (population-density
data was centered by subtacting the local average to allow
including the three locations in the same model). Bachelors in
post-reproductive season (black line with triangle markers), bachelors in
pre-reproductive season (black line with diamond markers), family
groups in high predation-risk grasslands (red line), family groups in null
predation-risk grasslands (purple line), family groups in high predation-
risk shrublands (green line), family groups in low predation-risk
shrublands (blue line).
doi:10.1371/journal.pone.0089060.g003

Group-Size Variation in Resource-Defense Ungulates
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Habitat structure had no effect on bachelor group size whereas

families located in grassland patches were larger than those located

in shrublands, and this effect was independent of predation risk

level. Various ungulate species have shown a positive correlation

between group size and habitat openness, such as elk [10],

wildebeest and zebra [12], blackbuck [41], axis deer (Axis axis) [11]

and roe deer (Capreolus capreolus) [4,43]. However, very different

processes have been proposed to explain the observed relation-

ships, including the interaction between habitat structure and

forage abundance, predation-risk or population density. In our

study case, previous knowledge on individual behavior again

predicts the observed pattern in group size variation. Between

female aggression-rate increases rapidly with group size when

family groups are feeding around shrubs whereas aggressive

interactions are almost inexistent among group members located

in grasslands [29], or among bachelors feeding in any habitat type

[30]. Thus, interference competition may add to territorial-defense

effort to constrain family group size more rapidly in shrublands

than in grasslands, as predicted by Jarman (1974). Therefore, in

our case study, individual behavior correlates and the lack of effect

on bachelor groups are in accordance with the adaptive

significance of the group-size increase in open grasslands.

Regarding population density, both family and bachelor groups

sizes increased with guanaco local abundance. However, the

magnitude of this relationship differed greatly among social-unit

types. For example, while an increase of approximately three

guanacos.km22 would result in a one-unit increase in bachelor

group size, a change in population density of almost 30

individuals.km22 would be required to add one individual to the

average family group. Considering that this 30-fold increase/

difference in population density is very unlikely to take place in the

wild, the biological sense of this relationship is questionable.

Therefore, we did find a relationship between population-density

and bachelor group size but, regarding family groups, density

effect was so weak that prevented to draw the same conclusion.

The lack of between-population variation after controlling for the

fixed effects indicates that mean sizes of family groups remain

constant in a wide range of population densities (4–70 guana-

cos.km22). Evidence of a positive relationship between group size

and population density was found in elk [44], axis deer [11] and

white-lipped peccary (Tayassu pecari) [45], among many other

ungulate species. Goitered gazelles (Gazella subgutturosa), for

example, showed a non-linear density-dependent response in

which a sevenfold difference in density was needed to induce

relevant group size changes [46]. In their study, Blank et al. [46]

stated that density effects on group size would be more common

among ungulates that tend to form large groups than those than

form small groups or that are territorial. Our findings regarding

within-population variation in group size are in accordance with

this idea, with density-independent and relatively small territorial

families, and larger bachelor groups as density increases.

In summary, our results indicate that predation risk and habitat

structure influence the size of guanaco family groups whereas

bachelor group size is linked to population density. Thus, family

groups supported Jarman’s hypotheses but the larger and more

variable bachelor groups were consistent with Gerard’s idea [3].

The notion of bachelor group size as an emergent property is

reasonable given the fusion-fission nature of these non-territorial

groups. On the other hand, in the more stable family groups,

defense effort by males may restrict territory size [14] and the

Table 2. Delta AIC scores of the best models obtained for family group size within a threshold of seven AIC units and the final
model selected according to our criterion (delta AIC threshold of two units).

Model Intercept Season Density Landscape EVI Patch PR Patch:PR df Delta AIC weight

59 1.451 0.006296 1.953 + + 5 0 0.157

123 1.489 0.006064 1.753 + + + 6 0.25 0.138

116 1.693 + 0.006144 + + + 6 1.18 0.087

115 1.71 0.005778 + + + 5 1.26 0.083

60 1.488 + 0.006475 1.58 + + 6 1.29 0.082

52 1.678 + 0.006384 + + 5 1.39 0.078

124 1.524 + 0.006242 1.394 + + + 7 1.58 0.071

Selected 1.694 0.006007 + + 4 1.83 0.063

121 1.514 1.625 + + + 5 2.86 0.037

57 1.474 1.835 + + 4 2.99 0.035

113 1.718 + + + 4 3.46 0.028

114 1.704 + + + + 5 3.87 0.023

20 1.718 + 0.006176 + 4 4.32 0.018

49 1.702 + + 3 4.38 0.018

122 1.543 + 1.327 + + + 6 4.43 0.017

50 1.688 + + + 4 4.47 0.017

58 1.505 + 1.525 + + 5 4.52 0.016

19 1.74 0.005723 + 3 5.57 0.01

28 1.763 + 0.00619 20.4401 + 5 6.01 0.008

18 1.726 + + 3 7.22 0.004

Variables included in the full model were the Intercept, season (pre vs post-reproductive), population density, landscape stratum, EVI, vegetation structure at patch
level, predation-risk level (PR), and vegetation patch-predation-risk interaction (Patch:PR). Last columns show degrees of freedom (df), delta AIC and AIC weights.
doi:10.1371/journal.pone.0089060.t002
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consequent intra-group competition costs may limit the number of

females that can forage efficiently in it. In this context, the trade-

off between the costs and benefits of group living for family

members may impose a more dramatic constraint to family group

size, and the adaptive adjustment proposed by Jarman seems an

evolutionary advantageous alternative. The sharper peak around

mean family group-size of the predator-exposed frequency

distribution is in accordance with this idea. However, it is

important to note that, though more prominent than the density

effect, the magnitude of habitat and predation effects on family

group size were still relatively small. The smallest family groups

predicted by our model were composed of 5 and the largest of 8

members. Moreover, 50% of the family groups recorded at each

location were composed of 5–7 members, regardless predation-risk

level. For example, typical group size of roe deer (Capreolus

capreolus), a highly plastic species, consists of less than 5 individuals

when they occur in woodlands but it is larger than 50 individuals

when they forage in open grasslands [47,48]. Hence, even though

we found evidence supporting Jarman’s ideas, this was relatively

subtle in biological terms. Guanaco family groups accounted for

70–80% of the groups sampled in each population; as a result,

social configuration was strongly determined by these social units.

Thus, while individual behavior has proven to be highly flexible

and allow guanacos to adjust to contrasting local conditions [29],

social plasticity of sedentary populations seems to be relatively low.

Since grouping patterns have great influence on herbivore spatial

distribution and resource use, low social plasticity might have

critical implications in terms of management and conservation.

Future studies will help to assess the consequences of guanaco

social system for other aspects of their ecology.

Ungulate species, and even populations, can differ markedly in

terms of mating systems [16]and types of predators [46], and it is

reasonable to expect these differences to have their correlates on

social organization. Anti-predator responses may differ in front of

predators with contrasting hunting strategies, and what it is

advantageous facing a lone, stalking felid may entail no benefits

when facing cursorial predators. To overlook these issues in the

search for massive generalizations will probably lead to contradic-

tory outcomes. Our results show that, according to the nature of the

social unit considered, group-size variation can be consistent with

the adaptive or the mechanistic approach, and highlight the

importance of taking into account the proximate interests and

constraints to which the members of the different social units may be

exposed to, when deriving predictions about group-size variation.

Acknowledgments

We thank Alejo Irigoyen, Andrés Johnson, Marcela Nabte, Victoria

Rodriguez, Virginia Burgi, Laura Lamuedra, Gustavo Pazos, Cynthia

Fernández, Esteban Bremen, Cristian Pertersen, Lucas Andreani, Rafael

Lorenzo, Lucı́a Castillo, Bambino Niera, Jonatan Jones, Cristian Careaga

and Magnolia Hernandez Cortés, for their support during field work; Tom

Mason and an anonymous reviewer for their useful comments; Alejandro

Arias and Fundación Vida Silvestre Argentina, Centro Nacional

Patagónico and Consejo Nacional de Investigaciones Cientı́ficas y Técnicas

for their logistic support.

Author Contributions

Conceived and designed the experiments: AM. Performed the experiments:

AM. Analyzed the data: AM. Contributed reagents/materials/analysis

tools: AM. Wrote the paper: AM. Provided editorial advice: RB.
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12 2.468 + 0.02374 1.192 5 0 0.169

36 2.662 + 0.02226 + 5 0.38 0.14

44 2.529 + 0.02387 1.118 + 6 0.39 0.139

Selected 2.604 + 0.02198 4 0.45 0.135

28 2.473 + 0.02376 1.194 + 6 2.22 0.056

52 2.686 + 0.02234 + + 6 2.36 0.052

116 2.686 + 0.02234 + + + 6 2.36 0.052

60 2.552 + 0.02395 1.119 + + 7 2.43 0.05

124 2.552 + 0.02395 1.119 + + + 7 2.43 0.05

20 2.609 + 0.022 + 5 2.63 0.045

34 2.688 + + 4 4.27 0.02

2 2.63 + 3 4.32 0.019

10 2.522 + 0.9585 4 4.81 0.015

42 2.585 + 0.8801 + 5 5.13 0.013

50 2.712 + + + 5 6.22 0.008

114 2.712 + + + + 5 6.22 0.008

18 2.634 + + 4 6.46 0.007

26 2.526 + 0.96 + 5 6.99 0.005

58 2.607 + 0.8788 + + 6 7.15 0.005

122 2.607 + 0.8788 + + + 6 7.15 0.005

Variables included in the full model were the Intercept, season (pre vs post-reproductive), population density, landscape stratum, EVI, vegetation structure at patch
level, predation-risk level (PR), and vegetation patch-predation-risk interaction (Patch:PR). Last columns show degrees of freedom (df), delta AIC and AIC weights.
doi:10.1371/journal.pone.0089060.t003
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